AD 740093

R-877-ARPA

December 1971

A Documentation of the Mintz-Arakawa Two-Level Atmospheric General Circulation Model

W. L. Gates, E. S. Batten, A. B. Kahle and A. B. Nelson

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

NATIONAL TECHNICAL INFORMATION SERVICE

BEST AVAILABLE COPY

2 40 4 4	WALLE SECTION E	d
লা	BRAL SECTION F	7
36	at a	
PH. CE		ᆀ
11. 16: 1.0		
STRIBUTE	TAYALADILAT COL	i
10111111		
DIT.	Will. 1	32
Λ		

This research is supported by the Advanced Research Projects Agency under Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study should not be interpreted as representing the official opinion or policy of Rand or of ARPA.

DOCUMENT CONTROL DATA

1. ORIGINATING ACTIVITY		30. REPORT SECUR UNCLASSIF	ITY CLASSIFICATION
The Rand Corpora	ation	2b. GROUP	
A DOCUMENTATION OF THE MIN	TZ-ARAKAWA TWO-LEVEL A	ATMOSPHERE GEN	ERAL CIRCULATION MODEL
4. AUTHOR(S) (Lost name, first name, initial) Gates, W. L., E. S. Batten	, Λ. B. Kahle, A. B. N	le] son	
5. REPORT DATE	60. TOTAL NO. OF	PAGES	6b. NO. OF REFS.
December 1971	419		18
7. CONTRACT OR GRANT NO.	8. ORIGINATOR'S	REPORT NO.	
DAHC15 67 C 0141	R-877-AR	PA	
90. AVAILABILITY/LIMITATION NOTICES		Ph. SPONSORING	
DDC-A		Advanced R	esearch Projects Agency
10. ABSTRACT		11 KEY WORDS	· · · · · · · · · · · · · · · · · · ·

Summary of the physical bases of the Mintz-Arakawa two-level atmospheric model and presentation of numerical procedures and computer program for its execution. Discussion covers the physics of the model, with particular attention given to the treatment of the moisture and heat sources, including parameterization of convective processes, cloudiness, and radiation. Numerical approximations and finite-difference equations used in the numerical simulations are also given. Throughout the documentation, emphasis is on the specific details of the model in its present form, rather than on derivation or justification of its present design. To facilitate the use of this model, a complete listing of the code as written in FORTRAN language is given, together with a description of all constants and parameters used. Also included are a dictionary of FORTRAN variables and a dictionary of principal physical features. To illustrate the model's performance, samples of its solutions are given for selected variables at a specific time.

11. KEY WORDS

Atmosphere Meteorology Computer Simulation R-877-ARPA

December 1971

A Documentation of the Mintz-Arakawa Two-Level Atmospheric General Circulation Model

W. L. Gates, E. S. Batten, A. B. Kahle and A. B. Nelson

A Report prepared for ADVANCED RESEARCH PROJECTS AGENCY

Bibliographies of Selected Rand Publications

Rand maintains a number of special subject bibliographies containing abstracts of Rand publications in fields of wide current interest. The following bibliographies are available upon request:

Aerodynamics • Arms Control • Civil Defense
Communication Satellites • Communication Systems
Communist China • Computer Simulation • Computing Technology
Decisionmaking • Game Theory • Maintenance
Middle East • Policy Sciences • Program Budgeting
SIMSCRIPT and Its Applications • Southeast Asia
Space Technology and Planning • Statistics • Systems Analysis
USSR/East Europe • Weapon Systems Acquisition
Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain copies of individual publications, write to: Communications Department, Rand, 1700 Main Street, Santa Monica, California 90406.

PREFACE

This documentation describes the two-level Mintz-Arakawa atmospheric general circulation model developed by Professors Mintz and Arakawa of the Department of Meteorology, University of California, Los Angeles. This is the first of a series of numerical models of the global circulation being used at Rand in a research program on the dynamics of climate. Through the selective alteration of the model's initial and boundary conditions, and of the model's physical and numerical treatment of atmospheric processes, it is planned that the sensitivity and response of the world's climates to either deliberate or inadvertent modification be explored. It is the purpose of the present documentation to facilitate those modifications of the model that may be required to simulate such climatic effects. This model, which was developed at UCLA with the support of the National Science Foundation, is undergoing continuing development, particularly with respect to the parameterization of convective heating and radiative transfer. The numerical solutions shown in this report are for illustrative purposes only and should not be used to judge the model's ability to simulate climate. Although every effort has been made to ensure the accuracy of the model description used here, the responsibility for any errors or misrepresentations rests solely with the authors.

The Rand research program on climate dynamics is sponsored by the Advanced Research Projects Agency, and is directed to the systematic exploration of the structure and stability of the earth's climate. Meteorological studies suggest that technologically feasible operations might trigger substantial changes in the climate over broad regions of the globe. Depending on their character, location, and scale, these changes might be both deleterious and irreversible. If such perturbations were to occur, the results might be seriously detrimental to the welfare of this country. So that we may react rationally and effectively to any such occurrences, it is essential that we: (1) evaluate all consequences of a variety of possible

occurrences that might modify the climate, (2) detect trends in the global circulation that presage changes in the climate, either natural or artificial, and (3) determine, if possible, means to counter potentially deleterious climatic changes. Our possession of this knowledge would make incautious experimentation unnecessary. The present Report is a technical contribution to this larger study of the effects on climate of environmental perturbations.

SUMMARY

In this documentation the physical bases of the Mintz-Arakawa two-level atmospheric model are summarized, and the numerical procedures and computer program for its execution are presented in detail. The physics of the model is summarized, with particular attention given to the treatment of the moisture and heat sources, including the parameterization of convective processes, cloudiness, and radiation. The numerical approximations and finite-difference equations used in the model's numerical simulations are also given. Throughout the documentation the emphasis is on the specific details of the model in its present form, rather than on the derivation or justification of its present design.

To facilitate the use of this model, a complete listing of the code as written in FORTRAN language is given, together with a description of all constants and parameters used. A complete dictionary of FORTRAN variables, a dictionary of principal physical features, and a complete list of symbols are presented. To illustrate the model's performance, samples of its solutions for selected variables at a specific time are also given.

ACKNOWLEDGMENTS

The authors would like to acknowledge the permission given by Professors Yale Mintz and Akio Arakawa of the University of California, Los Angeles, to use their atmospheric general circulation model, and for their numerous comments and suggestions made during their review of a draft version of this Report. They would like also to thank Dr. A. Katayama, of the Meteorological Research Institute, Tokyo, for a number of suggestions that have clarified the program description, and Professor R. T. Williams of the Naval Postgraduate School for his assistance during the early stages of the preparation of the model's code description. An expression of thanks is also due our colleagues in the Rand/ARPA Climate Dynamics Program for their encouragement. Finally, we would like to acknowledge the capable and patient typing of the manuscript by Phyllis Davidson.

Preceding page blank

CONTENTS

PREFACI	3	11:
SUMMARY	,	,
1 670101 F		
ACKNOWI	LEDGMENTS	vi:
Chapter	•	
I.	INTRODUCTION	1
II.	MODEL DESCRIPTION PHYSICS	7
	A. Notation and Vertical Layering	7
	B. Differential Equations	6
	C. Boundary Conditions	7
	D. Vertically Differenced Equations	ė
	1. Vector Form	8
	2. Rectangular (Map) Coordinates	11
	E. Friction Terms	14
	F. Moisture, Convection, and Clouds	15
	1. Convective Adjustment	17
	2. Large-Scale Condensation	17
	3. Convective Condensation	20
	a. Middle-Level Convection	22
	b. Boundary-Layer Temperature and Moisture	25
	c. Penetrating and Low-Level Convection	29
	4. Evaporation	33
	5. Moisture Balance and Ground Water	34
	6. Clouds	_
	7. Effective Water-Vapor Content	35 37
	G. Radiation and Heat Balance	38
	1. Short-Wave Radiation	
	a. Albedo	39
	b. The Radiation Subject to Scattering	40
	c. The Radiation Subject to Absorption	43
	2. Long-Wave Radiation	44
	3. Heat Balance at the Ground	47
	4. Heat Budget of the Atmosphere	53 56
III.	MODEL DESCRIPTION NUMERICS	59
	A. Time Finite Differences	59
	1. The General Scheme of Time Extrapolation	59
	2. Preliminary Estimate of the Dependent	23
	Variables (All Times Steps)	66
	3. Final Estimate of the Dependent Variables	00
	(Time Steps 1 to 4)	68
	4. Final Estimate of the Dependent Variables	00
	(Time Step 5)	69
		07

	В.	Horizontal Finite Differences	70
		1. The Horizontal Finite Difference Grid	70
		2. Finite-Difference Notation	75
		3. Preparation for Time Extrapolation	75
	C.	Solution of the Difference Equations	81
		1. The Mass Flux	81
		2. Continuity Equation	84
		3. Horizontal Advection of Momentum	86
		4. Vertical Advection of Momentum	91
		5. Coriolis Force	92
		6. Pressure-Gradient Force	93
		7. Horizontal Advection of Temperature	
		8. Energy-Conversion Terms	95
		 Energy-Conversion Terms Horizontal Advection of Moisture 	97
		10. Horizontally Differenced Friction Terms	99
		Telmo	102
			104
	70	12. Diabatic Heating Terms	106
	D.	Smoothing	107
	E.	Global Mass Conservation	111
	F.	Constants and Parameters	111
		1. Numerical Data List	111
		2. Geographical Finite-Difference Grid	113
		3. Surface Topography (Elevation, Sea-Surface	
		Temperature, Ice, and Snow Cover)	113
IV.	MODEL	PERFORMANCE	133
	Α.	Operating Characteristics	133
		1. Integration Program	133
		2. Map-Generation Program	137
	В.	Sample Model Output	139
		1. Maps of Selected Variables	139
		Smoothed Sea-Level Pressure	142
		Zonal (West/East) Wind Component	144
		Meridional (South/North) Wind Component	148
		Temperature	152
		Geopotential Height	156
		Total Heating	164
		Large-Scale Precipitation Rate	168
		Sigma Vertical Velocity	170
		Relative Humidity	172
		Precipitable Water	174
		Convective Precipitation Rate	
		Funnamentan Page	176
		Evaporation Rate	178
		Sensible Heat Flux	180
		Lowest-Level Convection	182
		Long-Wave Heating in Layers	184
		Short-Wave Absorption (Heating) in Layers	188
		Surface Short-Wave Absorption	192
		Surface Air Temperature	194
		Ground Temperature	196
		Ground Wetness	198

	Cloudiness	200
	Total Convective Heating in Layers	206
	Latent Heating	210
	Surface Long-Wave Cooling	
	Surface Heat Balance	212
	2. Surface-Pressure Sequence	214
	2. Surface-Pressure Sequence	216
V.	PHYSICS DICTIONARY	
	Purpose	223
	List of Towns	223
	List of Terms	223
VI.	LIST OF SYMBOLS	
	Purpose	239
	Purpose	239
	Symbol List	240
VII.	THE FORTRAN PROCRAM	
	A. Integration Program Listing	255
	THE STATE OF THE LIBERTY OF THE PARTY OF THE	255
		255
	- oute to the half computational suprouring	256
	3. Common and Equivalence Statements	258
	Code Listing	260
	Common	260
	Control	262
	Subroutines	264
	OTERADE	264
	CMD	265
	TADLA A V	266
	IDV VEV	266
	COLED	
	COMM	267
	COMP	268
	AVRY	274
	AVRX	279
	COMP 4	280
	COMP 4	291
	INPUT	293
	MAGFAC	296
	INSDET	297
	SDEL	298
	INIT 1, INIT 2	299
		301
VIII.		
A T T T .	FORTRAN DICTIONARY	367
	Purpose	367
	Term List	368
REFERENC	ES 4	07
		,0 /

I. INTRODUCTION

One of the more widely known numerical models of the global atmospheric general circulation is that developed by Professors Mintz and Arakawa at the Department of Meteorology, UCLA. First formulated in the early 1960s, this model has undergone a series of modifications and improvements, and has been used in a number of simulations of the global climate and in tests of atmospheric predictability. Although it addresses the primary dynamical and thermal variables at only two tropospheric levels, the model is relatively sophisticated in its treatment of the physics of large-scale atmospheric motion, and the method of numerical solution is relatively complex.

It is the purpose of this Report to describe the model from a user's viewpoint, in order to facilitate its actual use in a program of climatic simulation. Although some description of the model's basic equations is necessary, it is not our present purpose to present their derivation nor to discuss the justification of the model's many physical parameterizations and numerical procedures. Instead, we have attempted to set forth several aspects of the model: its physical basis, its numerical formulation and solution, its computer code, and its typical results. These aspects are related to one another by the provision of a dictionary of selected terms and a list of physical and FORTRAN symbols. The description of the model's physics, given in Chapter II, is intended to present the basic differential equations and physical constants; the corresponding difference equations and other numerical approximations used in the program are presented in Chapter III. This is followed by a summary of the program's operating characteristics in Chapter IV, together with some typical results for selected variables, and by Chapter V, which presents a physics dictionary giving a brief summary of the treatment of certain variables and effects. As a supplement to the preceding chapters, a comprehensive list of symbols is given in Chapter VI. Finally, the model's integration and output map-routine codes as written in FORTRAN are presented in extenso in Chapter VII, followed by a FORTRAN dictionary in Chapter VIII, whose purpose is to permit ready interpretation of

specific portions of the program. It is hoped that this documentation will answer the question, "Just how are the circulation simulations made?"

A previous description of the model (in one of its earlier versions) was given by Mintz (1965, 1968), and has been supplemented by Arakawa (1970). Further details of the treatment of convection and radiation were given by Arakawa, Katayama, and Mintz (1969). An extended description of the basic model and the computational procedures used was prepared by Langlois and Kwok (1969). This latter publication has been of particular use in the preparation of the present documentation, although the present version of the model differs slightly from the version described by them. In one form or another the Mintz-Arakawa two-level model was applied to the estimation of atmospheric predictability by Charney (1966) and Jastrow and Halem (1970), and was applied to the simulation of the circulation of the Martian atmosphere by Leovy and Mintz (1969). The present version of the model is being used in a program of experimentation on the dynamics of climate at Rand, and will form the basis of future model changes and extensions.

II. MODEL DESCRIPTION -- PHYSICS

In this chapter the physical and dynamical basis of the Mintz-Arakawa two-level general circulation model is presented, together with a summary of the basic differential equations and boundary conditions. Particular attention has been given to the preparation of a summary of the various physical approximations in the model's treatment of radiation, moisture, and convection.

A. NOTATION AND VERTICAL LAYERING

In the first instance the present model is for the troposphere only, and divides the atmosphere beneath an assumed isobaric tropopause into two layers, as sketched in Fig. 2.1. At the center of each layer are the reference levels (1 and 3) at which the basic variables of the model are carried. At the interface between the layers (level 2), as well as at the tropopause and earth's surface, certain additional variables and conditions are specified. For convenience, the atmosphere is divided in the vertical according to mass (or pressure), and the dimensionless vertical coordinate, o, is introduced

$$\sigma = \frac{\mathbf{p} - \mathbf{p}_{\mathrm{T}}}{\mathbf{p}_{\mathrm{m}} - \mathbf{p}_{\mathrm{T}}} \tag{2.1}$$

where p is the pressure, p_T the (constant) tropopause pressure, and p_s the (variable) pressure at the earth's surface. The levela 1, 2, and 3 are defined as those for σ = 1/4, 1/2, and 3/4, respectively, with the tropopause corresponding to σ = 0 and the surface always given by σ = 1. Thus, if the surface pressure is approximately 1000 mb and the tropopause is assumed to be at 200 mb, the levels 1 and 3 correspond approximately to the 400-mb and 800-mb levels, respectively.

Although a comprehensive list of symbols appears later in this report (see Chapter VI), it is convenient to introduce the more common variables at this point. Anticipating the use of spherical coordinates, the independent variables are:

(---

Fig. 2.1 -- Schematic representation of the model's vertical structure.

- ϕ = latitude, positive northward from the equator
- λ = longitude, positive eastward from Greenwich
- σ = dimensionless vertical coordinate, $0 \le \sigma \le 1$, increasing downward
- t time

The primary dependent (prognostic) variables are:

- $\vec{V} = (u, v)$, horizontal vector velocity
- T temperature
- " p pT, surface pressure parameter
- q = mixing ratio

The other dependent (diagnostic) variables are:

- geopotential
- a specific volume
- p pressure
- $\dot{\sigma} = \frac{d\sigma}{dt}$, sigma vertical-velocity measure

The forcing terms are:

- F = horizontal vector frictional force per unit mass
- H = diabatic heating rate per unit mass
- Q = rate of moisture addition per unit mass

The basic physical constants are:

- $f = 2\Omega \sin \varphi$, Coriolis parameter
- Ω = earth's rotation rate
- a = earth's radius
- k vertical unit vector
- c = specific heat (for dry air) at constant pressure
- R specific gas constant (for dry air)
- g = acceleration of gravity

B. DIFFERENTIAL EQUATIONS

The vector equation of horizontal motion (in σ coordinates) may be written

$$\frac{\partial}{\partial t} (\pi \vec{V}) + (\nabla \cdot \pi \vec{V}) \vec{V} + \frac{\partial}{\partial \sigma} (\pi \vec{V} \dot{\sigma}) + f \vec{k} \times \pi \vec{V}$$

$$+ \pi \nabla \phi + \sigma \pi \alpha \nabla \pi = \pi \vec{F} \qquad (2.2)$$

where

$$\nabla \cdot \vec{A} = \frac{1}{a \cos \varphi} \left[\frac{\partial A_{\lambda}}{\partial \lambda} + \frac{\partial}{\partial \varphi} \left(A_{\varphi} \cos \varphi \right) \right]$$
 (2.3)

for a vector $\vec{A} = (A_1, A_2)$.

The thermodynamic energy equation (in σ coordinates) is written

$$\frac{\partial}{\partial t} (\pi c_{\mathbf{p}} \mathbf{T}) + \nabla \cdot (\pi c_{\mathbf{p}} \mathbf{T} \vec{\mathbf{V}}) + \frac{\partial}{\partial \sigma} (\pi c_{\mathbf{p}} \mathbf{T} \vec{\sigma})$$

$$- \pi \alpha \left(\sigma \frac{\partial \pi}{\partial t} + \sigma \vec{\mathbf{V}} \cdot \nabla \pi + \pi \vec{\sigma} \right) = \pi \hat{\mathbf{H}}$$
(2.4)

The mass continuity equation is

$$\frac{\partial \pi}{\partial t} + \nabla \cdot (\pi \vec{V}) + \frac{\partial}{\partial \sigma} (\pi \dot{\sigma}) = 0$$
 (2.5)

The moisture continuity equation is

$$\frac{\partial}{\partial t} (\pi q) + \nabla \cdot (\pi q \vec{V}) + \frac{\partial}{\partial \sigma} (\pi q \dot{\sigma}) = \pi \dot{Q}$$
 (2.6)

The equations (2.2) and (2.4) to (2.6) are the prognostic equations for the dependent variables \vec{V} , T, π , and q. The specification of the frictional force (\vec{F}) , the heating rate (\vec{H}) , and the moisture-addition

rate (\hat{Q}) , or the right-hand sides of these equations is considered in subsequent sections. Supplementing these equations are the diagnostic equation of state,

$$\alpha = RT/p \tag{2.7}$$

and the hydrostatic equation,

$$\frac{\partial \phi}{\partial \sigma} + \pi \alpha = 0 \tag{2.8}$$

These complete the dynamical system in σ coordinates, with σ itself given by $\sigma = (p-p_T)/\pi$, where p_T is a constant (tropopause) pressure.

C. BOUNDARY CONDITIONS

Accompanying the dynamical system, Eqs. (2.2) to (2.8), are physical boundary conditions at only the earth's surface and the tropopause, as there are no lateral boundaries in the σ system for the global atmosphere. At the earth's surface we require zero (air) mass flux normal to the earth's surface and either a zero heat flux or a specified surface temperature, depending upon the surface character. Thus, we write at the earth's surface:

Here $\phi_4(\lambda,\phi)$ denotes the fixed distribution of the geopotential of the earth's land (or ice) surface, F_H is the vertical heat flux at the surface, and $T_g(\lambda,\phi)$ the fixed distribution of the sea-surface temperature.

At the assumed isobaric tropopause p $^{\sigma}$ p_{T} we require the free-surface condition dp/dt=0, or

$$\dot{\sigma} = 0$$
, at $\sigma = 0$ (2.8c)

Although they are not strictly boundary conditions, we may regard the specification of the surface drag coefficient which contributes to the horizontal frictional force, \vec{F} , in Eq. (2.2) as fixing the vertical momentum transfer at the surface, and similarly regard the specification of the surface evaporation (minus the surface precipitation and runoff) as determining the moisture available for the source \hat{Q} in Eq. (2.6). The determination of these transfers in terms of the model is described below. We might also regard the solar radiation at the top of the atmospheric model at $\sigma=0$ as a boundary condition. Here this flux is assumed to be given by the solar constant, modified as described below by the eccentricity of the earth's orbit and by the zenith angle of the sun.

D. VERTICALLY DIFFERENCED EQUATIONS

1. Vector Form

As an introduction to the presentation of the complete difference ence equations (including the horizontal and time finite-difference forms), the model's dynamical equations are here first stated in terms of the variables at specific model levels (which statement constitutes the vertical differencing in σ coordinates), and then given in terms of the horizontal (rectangular) map coordinates actually used in the computations. The dependent variables are computed at the several levels as shown below:

Table 2.1
DISPOSITION OF THE DEPENDENT VARIABLES

Level	σ	ð	φ	P	T	Ÿ	q
0	0	0	•••	P _T	• • •	• • •	• • •
1	1/4	•••	^ф 1	P ₁	T ₁	$\vec{v}_1^{}$	0
2	$\frac{1}{2}$	^σ 2	• • •	P ₂		• • •	•••
3	3	• • •	фз	P ₃	^T 3	\vec{v}_3	93
4 (surface)	1	Ø	•••	p _T + π	• • •	• • •	•••

We note that the mixing ratio, q, is carried only at level 3, and that the surface pressure is computed by means of π . At the midlevel 2, only the σ vertical velocity $\dot{\sigma}_2$ is independently computed, although it is sometime—useful to regard the wind and temperature at level 2 in terms of values interpolated between levels 1 and 3.

The equation of horizontal motion, Eq. (2.2), is now written for levels 1 and 3 (with corresponding subscripts) as

$$\frac{\partial}{\partial \mathbf{t}} (\pi \vec{\mathbf{V}}_1) + (\nabla \cdot \pi \vec{\mathbf{V}}_1) \vec{\mathbf{V}}_1 + \pi \dot{\sigma}_2 (\vec{\mathbf{V}}_1 + \vec{\mathbf{V}}_3) + \pi \mathbf{f} \vec{\mathbf{k}} \times \vec{\mathbf{V}}_1$$

$$+ \pi \nabla \phi_1 + \sigma_1 \pi \alpha_1 \nabla \pi - \pi \vec{\mathbf{F}}_1 \qquad (2.9)$$

$$\frac{\partial}{\partial t} (\pi \vec{V}_3) + (\nabla \cdot \pi \vec{V}_3) \vec{V}_3 - \pi \dot{\sigma}_2 (\vec{V}_1 + \vec{V}_3) + \pi f \vec{k} \times \vec{V}_3$$

$$+ \pi \nabla \phi_3 + \sigma_3 \pi \alpha_3 \nabla \pi = \pi \vec{F}_3 \qquad (2.10)$$

where vertical finite differences between $\sigma=0$ and $\sigma=1/2$ and between $\sigma=1/2$ and $\sigma=1$ have been taken, and the conditions $\dot{\sigma}\equiv0$ at $\sigma=0,1$ and $\dot{\vec{v}}_2=1/2(\dot{\vec{v}}_1+\dot{\vec{v}}_3)$ used.

The thermal energy equation (2.4) may be similarly written for levels 1 and 3 as

$$\frac{\partial}{\partial t} (\pi T_1) + \nabla \cdot (\pi T_1 \vec{V}_1) + \left(\frac{P_1}{P_0}\right)^{\kappa} \pi \dot{\sigma}_2 (\theta_1 + \theta_3)$$

$$- \frac{\pi \alpha_1 \sigma_1}{c_p} (\frac{\partial \pi}{\partial t} + \vec{V}_1 \cdot \nabla \pi) - \frac{\pi \dot{H}_1}{c_p}$$
(2.11)

$$\frac{\partial}{\partial t} (\pi T_3) + \nabla \cdot (\pi T_3 \vec{V}_3) - \left(\frac{P_3}{P_0}\right)^{\kappa} \pi \dot{\sigma}_2 (\theta_1 + \theta_3)$$

$$- \frac{\pi \alpha_3 \sigma_3}{c_p} (\frac{\partial \pi}{\partial t} + \vec{V}_3 \cdot \nabla \pi) - \frac{\pi \dot{H}_3}{c_p}$$
(2.12)

where the condition $\theta_2 = 1/2(\theta_1 + \theta_3)$ has been used with the potential temperature, θ , given by

$$\theta = T(p_0/p)^{\kappa}$$

with $p_0 = 1000$ mb, a reference pressure, and $\kappa = R/c_p = 0.286$.

Manipulation of the mass continuity equation (2.5) applied at levels 1 and 3 with the conditions $\dot{\sigma}=0$ at $\sigma=0.1$ leads to the relations

$$\frac{\partial \pi}{\partial t} = -\frac{1}{2} \nabla \cdot \left[\pi (\vec{v}_1 + \vec{v}_3) \right] \tag{2.13}$$

$$\dot{\sigma}_{2} = -\frac{1}{4\pi} \, \nabla \cdot \left[\pi (\vec{V}_{1} - \vec{V}_{3}) \right] \tag{2.14}$$

for the prediction of the surface pressure and the computation of the midtropospheric vertical motion field.

The moisture continuity equation (2.6) is applied only at the (lower) level 3, giving

$$\frac{\partial}{\partial t} (\pi q_3) + \nabla \cdot \left[\pi q_3 (\frac{5}{4} \vec{v}_3 - \frac{1}{4} \vec{v}_1) \right] = 2g(E - C)$$
 (2.15)

where the conditions $\dot{\sigma}=0$ at $\sigma=1$ and q=0 at $\sigma=1/2$ have been used, and the wind at level 3 ($\sigma=3/4$) is replaced by a wind at $\sigma=7/8$ found by linear extrapolation from \vec{V}_1 and \vec{V}_3 . The moisture source term, 2g(E-C), represents the net rate of vapor addition as a result of the evaporation rate, E, and condensation rate, C, into the air column of unit cross section between $\sigma=1$ and $\sigma=1/2$.

The hydrostatic equation (2.8) is integrated from the surface to the levels 1 and 3, yielding the relations

$$\phi_1 = \phi_4 + \frac{1}{2} c_p \theta_2 \left[\left(\frac{p_3}{p_o} \right)^{\kappa} - \left(\frac{p_1}{p_o} \right)^{\kappa} \right] + \frac{\pi}{2} (\sigma_3 \alpha_3 + \sigma_1 \alpha_1)$$
 (2.16)

$$\phi_{3} = \phi_{4} - \frac{1}{2} c_{p} \theta_{2} \left[\left(\frac{p_{3}}{p_{o}} \right)^{\kappa} - \left(\frac{p_{1}}{p_{o}} \right)^{\kappa} \right] + \frac{\pi}{2} (\sigma_{3} \alpha_{3} + \sigma_{1} \alpha_{1})$$
 (2.17)

where ϕ_4 is the (fixed) geopotential of the earth's surface, and where θ has been assumed linear in p^K space from $\sigma_1 = 1/4$ to the ground $\sigma = 1$.

2. Rectangular (Map) Coordinates

As a final transformation prior to the consideration of the difference equations used in the computations, it is convenient to present the vertically differenced equations (2.9) to (2.17) in terms of the rectangular (or map) coordinates x and y. The grid-scale distances m and n, defined as

$$\mathbf{m} = \sum_{i=1}^{n} \cos \varphi \tag{2.18}$$

$$n = a\Delta \varphi \tag{2.19}$$

represent the longitudinal and latitudinal distances between grid points separated by $\Delta\lambda$ and $\Delta\phi$, respectively. The dimensionless map coordinates x and y may then be defined as

$$x = m^{-1}a\lambda \cos \varphi \tag{2.20}$$

$$y = n^{-1}a\varphi \tag{2.21}$$

so that a rectangular grid-point array is generated with unit distance between points. The reciprocals m^{-1} and n^{-1} are the conventional map-scale or magnification factors.

We also introduce the new area-weighted variables

$$\Pi = mn\pi \tag{2.22}$$

$$\dot{S} = 2mn\pi\dot{\sigma}_2 \tag{2.23}$$

$$F = mnf - u \frac{dm}{dy}$$
 (2.24)

and the weighted mass fluxes

$$v^* = m\pi v \tag{2.26}$$

at both levels 1 and 3.

Upon multiplication by mn, the equations of motion, Eqs. (2.9) and (2.10), may thus be written:

$$\frac{\partial}{\partial t} (\Pi u_1) + \frac{\partial}{\partial x} (u_1^* u_1) + \frac{\partial}{\partial y} (v_1^* u_1) + \dot{s} \left(\frac{u_1 + u_3}{2} \right)$$

$$+ n \left(\pi \frac{\partial \phi_1}{\partial x} + \sigma_1 \pi \alpha_1 \frac{\partial \pi}{\partial x} \right) - F \pi v_1 = \Pi F_1^x$$
(2.27)

$$\frac{\partial}{\partial t} (\Pi \mathbf{v}_1) + \frac{\partial}{\partial \mathbf{x}} (\mathbf{u}_1^* \mathbf{v}_1) + \frac{\partial}{\partial y} (\mathbf{v}_1^* \mathbf{v}_1) + \dot{\mathbf{s}} \left(\frac{\mathbf{v}_1 + \mathbf{v}_3}{2} \right) + \mathbf{m} \left(\pi \frac{\partial \phi_1}{\partial y} + \sigma_1 \pi \alpha_1 \frac{\partial \pi}{\partial y} \right) + \mathbf{F} \pi \mathbf{u}_1 = \Pi \mathbf{F}_1^y$$
(2.28)

$$\frac{\partial}{\partial t} (\Pi u_3) + \frac{\partial}{\partial x} (u_3^* u_3) + \frac{\partial}{\partial y} (v_3^* u_3) - \dot{s} \left(\frac{u_1 + u_3}{2} \right) + n \left(\pi \frac{\partial \phi_3}{\partial x} + \sigma_3 \pi \alpha_3 \frac{\partial \pi}{\partial x} \right) - F \pi v_3 = \Pi F_3^x$$
 (2.29)

$$\frac{\partial}{\partial t} (\Pi v_3) + \frac{\partial}{\partial x} (u_3^* v_3) + \frac{\partial}{\partial y} (v_3^* v_3) - \dot{s} \left(\frac{v_1 + v_3}{2} \right)$$

$$+ m \left(\pi \frac{\partial \phi_3}{\partial y} + \sigma_3 \pi \alpha_3 \frac{\partial \pi}{\partial y} \right) + F \pi u_3 = \Pi F_3^y$$
(2.30)

where the frictional force $\vec{F} = (F^X, F^Y)$ at levels 1 or 3.

The thermodynamic equations (2.11) and (2.12) may be similarly written as

$$\frac{\partial}{\partial t} (\Pi T_1) + \frac{\partial}{\partial x} (u_1^* T_1) + \frac{\partial}{\partial y} (v_1^* T_1) + \left(\frac{p_1}{p_0}\right)^{\kappa} \left(\frac{\theta_1 + \theta_3}{2}\right) \dot{s}$$

$$- \frac{\sigma_1 \alpha_1}{c_p} \left(\pi \frac{\partial \Pi}{\partial t} + u_1^* \frac{\partial \pi}{\partial x} + v_1^* \frac{\partial \pi}{\partial y}\right) = \frac{\Pi \dot{H}_1}{c_p}$$
(2.31)

$$\frac{\partial}{\partial t} (\Pi T_3) + \frac{\partial}{\partial x} (u_3^* T_3) + \frac{\partial}{\partial y} (v_3^* T_3) - \left(\frac{p_3}{p_o}\right)^{\kappa} \left(\frac{\theta_1 + \theta_3}{2}\right) \dot{s}$$

$$- \frac{\sigma_3^{\alpha_3}}{c_p} \left(\pi \frac{\partial \Pi}{\partial t} + u_3^* \frac{\partial \pi}{\partial x} + v_3^* \frac{\partial \pi}{\partial y}\right) = \frac{\Pi \dot{H}_3}{c_p}$$
(2.32)

The mass and moisture continuity equations (2.13) to (2.15) may also now be written as

$$\frac{\partial \Pi}{\partial t} = -\frac{1}{2} \left[\frac{\partial}{\partial x} \left(\mathbf{u}_1^* + \mathbf{u}_3^* \right) + \frac{\partial}{\partial y} \left(\mathbf{v}_1^* + \mathbf{v}_3^* \right) \right] \tag{2.33}$$

$$\dot{S} = \frac{1}{2} \left[\frac{\partial}{\partial x} (u_3^* - u_1^*) + \frac{\partial}{\partial y} (v_3^* - v_1^*) \right]$$
 (2.34)

$$\frac{\partial}{\partial t} (\Pi q_3) + \frac{\partial}{\partial x} \left[q_3 (\frac{5}{4} u_3^* - \frac{1}{4} u_1^*) \right] + \frac{\partial}{\partial y} \left[q_3 (\frac{5}{4} v_3^* - \frac{1}{4} v_1^*) \right] = \frac{2\Pi g}{\pi} (E - C)$$
 (2.35)

Equations (2.27) to (2.35), together with (2.16) and (2.17), constitute the final dynamical statement of the model in vertically differenced form. The introduction of time and horizontal spatial finite differences is considered in the following sections.

E. FRICTION TERMS

The frictional terms \vec{F}_1 and \vec{F}_3 in the equations of horizontal motion (2.9) and (2.10) are given by relations of the form

$$\vec{F}_1 = -\mu \left(\frac{\partial \vec{V}}{\partial z} \right)_2 \cdot \frac{2g}{\pi} = -\mu \left(\frac{\vec{V}_1 - \vec{V}_3}{z_1 - z_3} \right) \frac{2g}{\pi}$$
 (2.36)

$$\vec{F}_3 = -\vec{F}_1 - C_D \rho_4 \vec{v}_s (|\vec{v}_s| + G) \frac{2g}{\pi}$$
 (2.37)

where μ is an empirical coefficient for the vertical shear stress, and the factor $2g/\pi$ represents the mass per unit area in each of the two model layers. Here z_1-z_3 is the height difference between the levels 1 and 3, C_D is the surface drag coefficient, ρ_4 the surface air density, \vec{V}_s a measure of the surface wind (= 0.7 \vec{V}_4 , with \vec{V}_4 an extrapolated wind at level 4), and G an empirical correction for gustiness.

The frictional force \vec{F}_1 thus represents the internal downward transfer of momentum between the levels due to the vertical shear of the horizontal wind, whereas the force \vec{F}_3 also includes the effects of surface skin friction.

F. MOISTURE, CONVECTION, AND CLOUDS

The purpose of this section is to describe the physics of the hydrologic cycle used in the model and to develop the expressions used to evaluate the moisture-source term, $2\frac{\Pi g}{\pi}$ (E - C), on the right-hand side of the moisture-balance equation for the atmosphere [Eq. (2.35)]. The moisture source for the atmosphere is evaporation from the surface, E, and the moisture sink is precipitation, C. All the moisture condensed in the model atmosphere is assumed to fall to the surface as precipitation. Thus the moisture sink for the atmosphere, C, is specified by large-scale, convective, and surface condensation. The variables specifying the amount of moisture in the atmosphere and in the ground are q_3 , the lower-level mixing ratio, and GW, the ground-wetness parameter. While q_3 is determined in part by horizontal advection and is thus modified every time step, GW, E, C, and that part of the change of q_3 due to E and C are computed every fifth time step (see Chapter III, Section A).

Clearly, the amount of evaporation, condensation, and convection depend on the thermal state of the atmosphere, which is in turn a function of the exchange of heat taking place during these processes. Instead of obtaining a simultaneous solution for the moisture and thermal states of the atmosphere, the model evaluates the evaporation and the components of the condensation in a sequence. At each step

of the sequence the thermal state of the atmosphere is modified, and the new values of temperature are used in the next step.

In the following subsections each process is discussed in the sequence in which it is evaluated in the FORTRAN program. First, the temperature lapse rate between $\sigma=3/4$ and $\sigma=1/4$ is adjusted to the dry-adiabatic lapse rate if it is found to be dry-adiabatically unstable; this convective adjustment is discussed in Subsection F.1. Second, if the air is supersaturated at $\sigma=3/4$, large-scale condensation occurs and the temperature and mixing ratios at $\sigma=3/4$ are adjusted (see Subsection F.2). Third, the temperature lapse rates between levels and the humidity are tested to determine the existence of moist convective instability. If there is instability, convective condensation occurs and the temperatures and mixing ratios are adjusted according to the three types of convection permitted:

- (a) Middle-level convection, which occurs if the layer between $\sigma = 3/4$ and $\sigma = 1/4$ is unstable (for moist convection).
- (b) Penet ating convection, which occurs if the layer from $\sigma = 3/4$ to $\sigma = 1/4$ is stable but the layer from the surface to $\sigma = 3/4$ is unstable and, in the mean, unstable from the surface to $\sigma = 1/4$.
- (c) Low-level convection, which occurs if the atmosphere is unstable only between the surface and $\sigma = 3/4$.

To determine the existence of convection types (b) and (c), one needs the temperature and mixing ratios at the top of the surface boundary layer. All three forms of convective condensation and the physics of the boundary layer are discussed in Subsection F.3. Fourth, the quantities needed to evaluate the evaporation from the surface are discussed in Subsection F.4, and the moisture balance at the surface and in the atmosphere is discussed in Subsection F.5.

The final two subsections are devoted to parameters which are related to the moisture content of the atmosphere and are used in the radiation balance calculation in Section G. In Subsection F.6, the cloud types and cloud amounts produced by the various forms of condensation are discussed, and in Subsection F.7, equations for the effective water-vapor content of the atmosphere are derived.

1. Convective Adjustment

If, is a result of the changes due to advection, the atmosphere is found to be dry-adiabatically unstable $(\theta_1 \leq \theta_3)$ at the beginning of the heating and moisture-balance calculations, then a "convective adjustment" is made. This consists of setting both θ_1 and θ_3 equal to an average $\overline{\theta}$, which is calculated from

$$\overline{\theta} = \overline{T} \left[\frac{1}{2} \left(p_1^{\kappa} + p_3^{\kappa} \right) \right]^{-1}$$

assuming that

$$\bar{T} = \frac{1}{2} (T_1 + T_3)$$

Thus, the convective adjustment consists of setting

$$\frac{\theta_1}{p_0^{\kappa}} = \frac{\theta_3}{p_0^{\kappa}} = \frac{\theta_2}{p_0^{\kappa}} = \frac{T_1 + T_3}{p_1^{\kappa} + p_3^{\kappa}}$$
 (2.38)

from which the temperatures are accordingly recalculated as

$$T_1 = \frac{\theta_1}{p_0^{\kappa}} p_3^{\kappa}$$

$$T_3 = \frac{\theta_3}{p_0^{\kappa}} p_3^{\kappa}$$
(2.39)

After this convective adjustment, the model proceeds as usual to the moisture and convection calculations.

2. Large-Scale Condensation

Large-scale condensation occurs if the lower-level grid cell is supersaturated at the beginning of the moisture-balance calculation.

The saturation mixing ratio is given by

$$q_s(T) = \frac{M_w}{M_d} \frac{e_s(T)}{p - e_s(T)}$$
 (2.40)

where M_{W} and M_{d} are the mean molecular weights of water vapor and dry air, respectively ($M_{W}/M_{d}=0.622$), and where the saturation vapor pressure is given by the equation

$$e_s(T) = e_o \exp(A_e - B_e/T)$$
 (2.41)

with e_0 = 1 mb, A_e = 21.656, and B_e = 5418 deg K.

If it is then determined that $q_3 > q_8(T_3)$ as a result of the computed solution of the moisture continuity equation (2.35), large-scale condensation is allowed to occur. This condensation will remove moisture from the atmosphere and will also warm the atmosphere by releasing latent heat, with the warming in turn modifying the saturation mixing ratio $q_8(T_3)$. The condensation proceeds until $q_3 = q_8(T)$ at the new (warmed) temperature. If the original temperature and mixing ratio at level 3 are written as T_0 and T_0 , the new temperature T_0 satisfies

$$c_p(T - T_o) = L[q_o - q_s(T)]$$
 (2.42)

In view of the dependence of q_s on T, as given by Eqs. (2.40) and (2.41), we seek the approximate value of 1 when

$$F(T) = T - T_o + \left(\frac{L}{c_p}\right)[q_s(T) - q_o] = 0$$
 (2.43)

Using the Newton-Raphson method, the first-order approximation of T becomes

$$T \approx T_0 - \frac{F(T_0)}{F'(T_0)} \tag{2.44}$$

where

$$F(T_o) = -\frac{L}{c_p} [q_o - q_s(T_o)]$$
 (2.45)

and

$$F'(T_o) = \frac{dF}{dT}(T_o) = 1 + \frac{L}{c_p} q_s(T_o) \frac{B_e}{T_o^2} \left[1 + \frac{M_d}{M_w} q_s(T_o) \right]$$
 (2.46)

Substituting Eqs. (2.45) and (2.46) into (2.44) and neglecting $(M_d/M_w)q_s(T_o)$ in comparison with 1, the change in temperature at level 3 as a result of large-scale condensation becomes

$$(\Delta T_3)_{LS} = T - T_0 = \frac{\frac{L}{c_p} [q_0 - q_g(T_0)]}{1 + \frac{L}{c_p} q_g(T_0) \frac{B_e}{T_0^2} }$$
 (2.47)

The change in moisture content due to this large-scale condensation is found from

$$(\Delta q_3)_{LS} = \frac{c_p}{L} (T_3)_{LS}$$
 (2.48)

and the new q_3 is given by

$$q_3 = q_3 - (\Delta q_3)$$
LS
(2.49)

Since the amount of precipitation is assumed to be equal to the condensation, the large-scale precipitation rate becomes

$$P_{LS} = (\pi/2g\rho w)(\Delta q_3)_{LS}$$
 (2.50)

where $(\pi/2g)/\rho w$ is a conversion factor used to obtain the precipitation rate from the condensation rate (see Chapter IV, Large-Scale Precipitation Rate: Map 9). Finally, the large-scale condensation produces type-2 clouds (see Subsection F.6).

3. Convective Condensation

To determine the possibility of convection, suitable stability criteria must first be defined. The equivalent potential temperature, defined as

$$\theta_{E} = \theta_{d} \exp\left(\frac{Lq}{c_{p}T}\right) \tag{2.51}$$

where

$$\theta_{d} = T \left(\frac{P_{o}}{P - e} \right)^{K} \tag{2.52}$$

is conservative in both unsaturated-adiabatic and saturated-adiabatic processes. A more convenient parameter for our purposes is given by the approximation

$$\frac{c_p^T}{\theta} d\theta_E \approx dh \tag{2.53}$$

Here

$$h = c_p T + gz + Lq$$
 (2.54)

shall be referred to as the static energy; it is the sum of the enthalpy, the potential energy, and the 1stent energy of a parcel of air. The static energy is very nearly conservative in both unsaturated and saturated adiabatic processes, and thus can be used in the analysis of convective phenomena. For example, following the argument of Arakawa et al. (1969), if we assume that the air in the clouds at level 1 is saturated, then the static energy in the cloud at level 1 becomes

$$h_c = c_p T_{c1} + g z_1 + Lq_s (T_{c1})$$
 (2.55)

where $q_s(T_{cl})$ is the saturation mixing ratio at the cloud temperature T_{cl} . For convenience we define the quantity

$$h_1^* = c_p^T + gz_1 + Lq_g^T)$$
 (2.56)

where T_1 is the temperature of the air surrounding the clouds at level 1. Eliminating gz_1 from Eqs. (2.55) and (2.56), the temperature difference between the clouds and the surrounding air at level 1 becomes

$$T_{c1} - T_1 = \frac{1}{1 + \gamma_1} \frac{h_c - h_1^*}{c_p}$$
 (2.57)

where

$$\gamma_{1} = \frac{L}{c_{p}} \left(\frac{\partial q_{s}}{\partial T} \right)_{1} \approx \frac{L}{c_{p}} \frac{q_{s}(T_{c1}) - q_{s}(T_{1})}{T_{c1} - T_{1}}$$
(2.58)

Thus it can be seen from Eq. (2.57) that when $h_c > h_1^*$ the temperature in the clouds at level 1 is warmer than that in the surroundings, and any convection that has been initiated will tend to continue.

We now seek to determine the value of h_{C} in terms of the Mintz-Arakawa two-level model's parameters. To do this we assume that all the entrainment takes place at level 3, and thus the vertical mass flux (M) through the cloud above level 3 becomes

$$M = M_b \eta \tag{2.59}$$

where M_b is the vertical mass flux through the bottom of the cloud and η is the entrainment factor. When there is entrainment, $\eta > 1$, and the static energy in the cloud is a mixture of the static energy entering the base of the cloud, h_b , and that of the surrounding air, h_3 . Thus we have

$$h_c = h_3 + \frac{1}{\eta} (h_b - h_3)$$
 (2.60)

What is assumed for the amount of entrainment will therefore determine the value of $h_{\rm c}$ in Eq. (2.57) and thus the existence of stability in the model.

In the following subsections, the value of n for each type of convection will be discussed and the stability criteria derived. The criteria will then be used to determine the temperature and moisture changes resulting from the convection.

a. Middle-Level Convection. In middle-level convection we assume that the entrainment at level 3 is much larger than the mass flux through the bottom of the cloud. Mathematically, it can be represented by setting $\frac{1}{n} = 0$ while leaving nM_b finite. Thus from Eq. (2.60) we have $h_c = h_3$, and from Eq. (2.57) the condition for middle-level convection becomes $h_3 > h_1^*$. The parameters h_3 and h_1^* , rewritten in terms of the potential temperatures and mixing ratios at levels 1 and 3, are

$$\frac{h_{1}^{*}}{c_{p}} = \theta_{3} \left(\frac{P_{a}}{P_{o}}\right)^{\kappa} + (\theta_{1} - \theta_{3}) \left(\frac{P_{2}}{P_{o}}\right)^{\kappa} + \frac{L}{c_{p}} q_{g}(T_{1})$$
 (2.61)

$$\frac{h_3}{c_p} = \theta_3 \left(\frac{p_s}{p_o}\right)^{\kappa} + \frac{L}{c_p} q_3 \tag{2.62}$$

where

$$\theta_3 \left(\frac{p_s}{p_o}\right)^k \approx T_3 + \frac{g}{c_p} z_3 \tag{2.63}$$

and

$$(\theta_1 - \theta_3) \left(\frac{p_2}{p_0}\right)^{\kappa} = \left(T_1 + \frac{g}{c_p} z_1\right) - \left(T_3 + \frac{g}{c_p} z_3\right)$$
 (2.64)

To determine the temperature change at levels 1 and 3 due to this convection, we introduce the concept of "dry" static energy, S, where

$$S \equiv c_{p}^{T} + gz \tag{2.65}$$

Considering convection only, the continuity equation for S at level 1 is

$$\frac{\partial \rho S_1}{\partial t} = -\frac{\partial (\eta M_b S_1)}{\partial z} \tag{2.66}$$

which may be approximated by

$$\frac{\Delta p}{g} \frac{\partial S_1}{\partial t} = nM_b (S_{c1} - S_2) \tag{2.67}$$

Neglecting the time change of the geopotential and using Eq. (2.57) we may write Eq. (2.67) as

$$\frac{\partial T_1}{\partial t} = \frac{g}{c_p \Delta p} n M_b \left[\frac{1}{1 + \gamma_1} (h_3 - h_1^*) + (s_1 - s_2) \right]$$
 (2.68)

With similar approximations, the temperature change at level 3 is given by

$$\frac{\partial T_3}{\partial t} = \frac{g}{\Delta p} \frac{\eta M_b}{c_p} (s_2 \quad s_3) \tag{2.69}$$

Equations for the mixing ratios at levels 1 and 3 can be derived in a similar fashion. However, in the model all the moisture is assumed to be carried at level 3, and thus the change of q_3 due to convection becomes

$$\frac{\partial q_3}{\partial t} = \frac{g}{\Delta p} \eta M_b [q_s(T_{c1}) - q_3]$$

$$= \frac{g}{\Delta p} \eta M_b [q_s(T_1) - q_3 + \frac{\gamma_1}{1 + \gamma_1} \frac{1}{L} (h_3 - h_1^*)] \qquad (2.70)$$

Here, Eq. (2.57) has been used to eliminate $q_{g}(T_{c1})$.

To eliminate the unknown mass flux in Eqs. (2.68) to (2.70), we relate nM_b to the relaxation time, τ_r , of free cumulus convection. As a result of convection, the instability of the layer diminishes and $h_3 \rightarrow h_1^{\frac{1}{2}}$. The time rate of change of $(h_3 - h_1^{\frac{1}{2}})$ is given by

$$\frac{\partial}{\partial t} (h_3 - h_1^*) = \frac{\partial}{\partial t} (s_3 - s_1) + L \frac{\partial q_3}{\partial t} - L \frac{\partial q_8(T_1)}{\partial T_1} \frac{\partial T_1}{\partial t}$$

$$= -\frac{g}{\Delta p} \eta h_b \frac{2 + \gamma_1}{1 + \gamma_1} [(h_3 - h_1^*) + \frac{1}{2} (1 + \gamma_1) (s_1 - s_3)] \quad (2.71)$$

If the instability diminishes exponentially with e-folding time $\tau_{\mathbf{r}}$, then

$$\eta M_{b} = \frac{1}{\tau_{r}} \frac{\Delta p}{8} \frac{1 + \gamma_{1}}{2 + \gamma_{1}} \left[\frac{h_{3} - h_{1}^{*}}{h_{3} - h_{1}^{*} + \frac{1}{2} (1 + \gamma_{1})(s_{1} - s_{3})} \right]$$
 (2.72)

When Eq. (2.72) is combined with (2.68) and (2.69), the change in temperature at levels 1 and 3 [over the time interval (5 Δ t) between heating calculations] due to the release of latent heat is given by

$$(\Delta T_1)_{CM} = \frac{h_3 - h_1^{\frac{1}{2}}}{c_p(2 + \gamma_1)} \frac{5\Delta t}{\tau_r}$$
 (2.73)

$$(\Delta T_3)_{CH} = \frac{(\Delta T_1)_{CM}^{(1 + \gamma_1)LR/2}}{(h_3 - h_1^*)/c_p + (1 + \gamma_1)LR/2}$$
(2.74)

where $\gamma_1 = (L/c_p)$ 5418deg $q_s(T_1)T_1^{-2}$ and $LR = (\theta_1 - \theta_3)(p_2/p_0)^K$ is a "nominal lapse rate." In this model, the relaxation time, τ_r , is taken to be 1 hour. From Eqs. (2.70) and (2.73) the change in moisture at level 3 is given by

$$(\Delta q_3)_{CM} = \frac{c_p}{L} \left[(\Delta T_1)_{CM} + (\Delta T_3)_{CM} \right]$$
 (2.75)

As in Eq. (2.50), the precipitation rate due to middle-level convection is given by

$$P_{CM} = (\pi/2g\rho_W)(\Delta q_3)_{CM}$$
 (2.76)

Type-1 clouds may be produced by this middle-level convection (see Subsection F.6), and the associated convective precipitation rate is illustrated in Map 13, Chapter IV.

b. Boundary-Layer Temperature and Moisture. If middle-level convection does not occur, either "penetrating convection" or "low-level convection" may. Since both of these convection types originate at the air/ground interface, it is convenient to discuss first the computation of the moisture, q₄, and air temperature, T₄, at the surface along with other air/ground interaction parameters. A thin

boundary layer is assumed at the air/ground interface, with the subscript "4" referring to values at the top of the boundary layer and the subscript "g" referring to values at the bottom of the layer, just above the ground or water surface.

We assume that the flux of static energy [see Eq. (2.54)] from the surface into the bottom of the boundary layer is equal to the flux out the top. We neglect horizontal convergence in this thin boundary layer and also assume negligible geopotential difference between its top and bottom. Thus the flux of static energy from the surface may be approximated by

$$\Gamma_{h} = \rho_{4} C_{D} W (h_{g} - h_{4})$$
 (2.77)

where

$$W = |\vec{V}_{g}|^{\pi} + G \tag{2.78}$$

is a surface-wind parameter corrected for gustiness and $C_{\rm D}$ is the drag coefficient. Implied in Eq. (2.77) are the assumptions that the eddy-diffusion coefficient for the static energy can be approximated by that for momentum, and that a constant transfer coefficient may be used in the boundary layer. Equating (2.77) to the flux through the top of the boundary layer, we obtain

$$\rho_4 C_D W(h_g - h_4) = \rho_4 A_V \frac{h_4 - h_3}{z_3}$$
 (2.79)

where ${\rm A}_{\rm v}$ is the vertical eddy-diffusion coefficient. Solving Eq. (2.79) for ${\rm h}_4$ we obtain

$$h_4 = (EDR)h_3 + (1 - EDR)h_g$$
 (2.80)

where h₃ is given by Eq. (2.62), h_g is given by

$$\frac{h_g}{c_p} = T_g + \frac{L}{c_p} q_g$$
 (2.81)

and

EDR =
$$\frac{A_{v}/z_{3}}{A_{v}/z_{3} + C_{D}W}$$
 (2.82)

In the present version of the model it is assumed that $A_v = 1|\vec{v}_s|^m$ m² sec⁻¹, where the surface wind \vec{v}_s is in m sec⁻¹.

In order to obtain the surface moisture, q_4 , and temperature, T_4 , we now write the parameter h_4 from Eq. (2.54) as

$$\frac{h_4}{c_p} = T_4 + \frac{L}{c_p} q_4 \tag{2.83}$$

By defining the values of q_g and q_4 , one may solve Eqs. (2.80) and (2.83) for T_4 in terms of the surface parameters T_g and GW and the static energy at level 3. In general the ground temperature, T_g , and the ground wetness, GW (0 \leq GW \leq 1), are available from the previous time step, along with the level-3 temperature and moisture. From these data, the relative humidities at levels 3 and 4 may be determined from

$$RH_3 = \frac{q_3}{q_8(T_3)}$$
 (2.84)

and

$$RH_4 = \frac{(2GW)(RH_3)}{GW + RH_3}$$
 (2.85)

where RH₄ is the harmonic mean of RH₃, the relative humidity at level 3, and the ground wetness, GW. The ground-level mixing ratio is assumed to be directly proportional to the ground wetness. Hence

$$q_{g} = GW q_{g}(T_{g})$$
 (2.86)

where $q_{g}(T_{g})$ is calculated from T_{g} in the usual fashion [see Eq. (2.40)],

$$q_s(T_g) = \frac{0.622 e_s(T_g)}{p_4 - e_s(T_g)}$$
 (2.87)

and the ground-level saturation vapor pressure is given by

$$e_s(T_g) = min[e_o exp(A_e - B_e/T_g), p_4/16.62]$$
 (2.88)

The mixing ratio at level 4 can now be obtained from Eq. (2.85) and an extrapolation of $q_g(T_g)$ to level 4. Thus

$$q_{4} = RH_{4} \left[q_{g}(T_{g}) + \Delta z \frac{dq_{g}(T_{g})}{dT} \frac{dT}{dz} \right]$$

$$= RH_{4} \left[q_{g}(T_{g}) + \frac{c_{p}}{L} \gamma_{g}(T_{4} - T_{g}) \right] \qquad (2.89)$$

where γ_g is evaluated from

$$\gamma_{g} = \frac{L}{c_{p}} \frac{dq_{s}(T_{g})}{dT} = \frac{L}{c_{p}} 5418 deg \frac{q_{s}(T_{g})}{T_{g}^{2}}$$
 (2.90)

Using Eqs. (2.83), (2.89), and (2.80), the temperature at level 4 becomes finally

$$T_{4} = \begin{cases} \frac{\tilde{h}_{4}}{c_{p}} - RH_{4} \left[\frac{L}{c_{p}} q_{s}(T_{g}) - \gamma_{g}T_{g} \right] \\ 1 + RH_{4}\gamma_{g} \end{cases}, \quad \text{if } T_{4} \left(\frac{p_{o}}{p_{4}} \right) = 0 \end{cases}$$

$$(2.91)$$

$$\frac{1}{3} \left(\frac{p_{4}}{p_{o}} \right), \quad \text{otherwise}$$

where \widetilde{h}_4 is the value of the static energy at level 4 as given by Eq. (2.80). The condition on T_4 given by Eq. (2.91) is invoked to prevent a super-adiabatic lapse rate between levels 4 and 3. From the quantities T_4 and T_4 given by Eqs. (2.89) and (2.91) the convection parameter T_4 defined by Eq. (2.83) may then be evaluated, although the quantities T_4 and T_4 will be redefined later if penetrating or low-level convection occurs [see Eqs. (2.96) and (2.97) below].

c. Penetrating and L. Level Convection. In the model, both penetrating convection and low-level convection are mutually exclusive with middle-level convection. Thus, the first criterion to be met is that the layer between level 3 and level 1 be stable, i.e., that $h_3 < h_1^*$. A second criterion, similar to Eq. (2.57) for middle-level convection, is obtained from instability conditions for the layer between levels 4 and 3. Thus we first write

$$T_{c3} - T_3 = \frac{1}{1 + \gamma_3} \frac{h_c - h_3^*}{c_p}$$
 (2.92)

where T_{c3} is the temperature of the rising air in the clouds at level 3,

$$\gamma_3 = \frac{L}{c_p} \frac{dq_s(T_3)}{dT} = \frac{L}{c_p} 5418deg \frac{q_s(T_3)}{T_3^2}$$
 (2.93)

and

$$\frac{h_3^*}{c_p} = \theta_3 \left(\frac{p_s}{p_o}\right)^{\kappa} + \frac{L}{c_p} q_s(T_3)$$
 (2.94)

For penetrating and low-level convection we assume that there is no entrainment at level 3 (n = 1), and from Eq. (2.60) we then find $h_c = h_b$. Further, we take the static energy at the base of the cloud, h_b , to be equal to its value at the top of the boundary layer, h_4 . Therefore the second criterion for penetrating and low-level convection becomes $h_4 > h_3$, along with the primary criterion $h_3 < h_1$. When these two conditions are met, we may then discriminate between penetrating and low-level convection. From Eq. (2.57) with $h_c = h_4$ we see that if $h_4 \ge h_1$, convection can penetrate into the stable layer above level 3 and reach all the way to level 1. This is therefore the distinguishing condition for penetrating convection. If, on the other hand, $h_4 < h_1^*$, the convection stops at level 3. This is therefore the condition for low-level convection.

In the case of low-level convection, it is assumed that h_4 is modified to h_3 , because of the process of transporting static energy out of the boundary layer. This is equivalent to assuming that static energy in the cloud becomes h_3 . Low-level convection may produce type-3 clouds (see Subsection F.6), and condensation and precipitation are not allowed to occur; all the moisture transported as clouds is assumed to evaporate again within the same layer with no release of latent heat. The effect of this type of convection is thus felt only in the vertical transport of sensible heat and in surface evaporation, where it alters the surface moisture and temperature.

Indicating by primes the values prior to modification by low-level convection, we may write

$$h_4 = h_4^* - (h_4^* - h_3^*)$$
 (2.95)

Substituting the definitions of h_4 and h_4' into Eq. (2.95) and using Eq. (2.89) for the old and new mixing ratios at level 4, the surface temperature and mixing ratios are given, after convection, as

$$T_4 = T_4' - \frac{(h_4' - h_3')/c_p}{1 + RH_4 Y_g}$$
 (2.96)

$$q_4 = \frac{1}{L} \left(h_4' - \frac{T_4}{c_p} \right)$$
 (2.97)

The temperature and mixing-ratio adjustments at level 4 given by Eqs. (2.96) and (2.97) also occur in the case of penetrating convection. To find the change in the temperature and mixing ratios at levels 3 and 1 in this case we continue to assume modification of h_4 to h_3 , and follow the same procedure used in middle-level convection. Thus, as in Eqs. (2.68) and (2.69) and using h_3^* as the static energy in the cloud, we obtain

$$\frac{\partial T_1}{\partial t} = \frac{R}{c_p \Delta p} M_b \frac{1}{1 + \gamma_1} (h_3^* - h_1^*) + \frac{S_1 - S_2}{c_p}$$
 (2.98)

and

$$\frac{\partial T_3}{\partial t} = \frac{g}{\Delta p} M_b \frac{S_2 - S_4}{c_p} \tag{2.99}$$

To determine the value of the mass flux, M_b , we assume, as in the case of middle-level convection, that the penetrating convection decays with a relaxation time τ_r . Here M_b is determined by the time required to remove the instability in the layer from level 4 to level 3, i.e., the time required for h_4' to approach h_3' . With this assumption, the mass flux becomes

$$H_{b} = \frac{1}{\tau_{e}} \frac{\Delta p}{8} \frac{h_{4}^{*} - h_{3}^{*}}{EDR \left(\frac{h_{3}^{*} - h_{1}^{*}}{1 + \gamma_{1}} + s_{1} - s_{2}\right) + (1 + \gamma_{3})(s_{2} - s_{4})}$$
(2.100)

Using Eqs. (2.98), (2.99), and (2.100), the temperature changes at the levels 1 and 3 due to penetrating convection over the time interval $5\Delta t$ are given by

$$(\Delta T_1)_{CP} = \frac{h_4 - h_3^*}{c_p^*} \tau_1 \frac{5\Delta t}{\tau_r}$$
 (2.102)

$$(\Delta T_3)_{CP} = \frac{h_4 - h_3^*}{c_p^*} \tau_2 \frac{5\Delta t}{\tau_r}$$
 (2.102)

where

$$\tau_1 = \frac{h_3^* - h_1^*}{(1 + \gamma_1)c_p} + \frac{LR}{2}$$
 (2.103)

$$\tau_2 = \left(\frac{LR}{2}\right) + \theta_3 \left(\frac{P_4}{P_0}\right)^{\kappa} - T_4$$
 (2.104)

$$\tau = \begin{cases} \text{EDR } \tau_1 + (1 + \gamma_3)\tau_2, & \text{if } \tau \ge 0.001 \\ 0.001, & \text{otherwise} \end{cases}$$
 (2.105)

and $\tau_{\rm r}$ is the convection relaxation time as before. As with the middle-level convection, all the moisture condensed (and hence precipitated) is assumed to originate in the lower layer, so that the level-3 moisture change due to penetrating convection is given by

$$(\Delta q_3)_{CP} = \frac{c_p}{L} \left[(\Delta T_1)_{CP} + (\Delta T_3)_{CP} \right]$$
 (2.106)

Type-1 clouds may be produced by this convection (see Subsection F.6), and the precipitation rate due to penetrating convection is given by

$$P_{CP} = (\pi/2\text{gow})(\Delta q_3)$$
CP
(2.107)

This contributes to the total convective precipitation rate illustrated in Map 13, Chapter IV.

4. Evaporation

The evaporation rate per unit area from the surface is approximated by an equation similar to (2.77) for the flux of static energy from the surface. Thus

$$E = \rho_4 C_D W(q_g - q_4)$$
 (2.108)

where $\rho_4 = p_s(RT_4)^{-1}$ with R the gas constant, p_s , the surface (level-4) pressure, and T_4 and q_4 are given by Eqs. (2.96) and (2.97) if penetrating or low-level convection exists, and otherwise by Eqs. (2.91) and (2.89). The ground-level value of the mixing ratio is given by

$$q_g = GWq_{se}(T_{gr})$$
 (2.109)

where $q_{se}(T_{gr})$ is the effective saturation mixing ratio at the bottom of the boundary layer after a correction to include the effects of the radiation balance at the surface on the ground-level temperature (see Subsection G.3). Thus

$$q_{se} = q_{s}(T_{g}) + \frac{dq_{s}(T_{g})}{dT} (T_{gr} - T_{g})$$
 (2.110)

where T is the new value of T calculated to include the radiation.

The evaporation thus calculated can be either positive or negative, and is available as a separate output from the program (see Map 14, Chapter IV). The moisture at level 3 will be changed in direct preportion to this evaporation. Thus, over the time interval 5Δt, the contribution by evaporation to the total moisture balance at level 3 (see following subsection) is given by

$$(\Delta q_3)_E = \frac{2g}{\pi} \cdot E \cdot 5\Delta t \tag{2.111}$$

5. Moisture Balance and Ground Water

Moisture balance is maintained both in the form of moisture at level 3 and as the ground water on the land. The ocean, ice, and snow are considered both as infinite sources (for evaporation) and infinite sinks (for precipitation, negative evaporation, and runoff). Although the upper-level moisture is calculated as a function of lower-level moisture for radiation purposes, the total amount at the upper level is otherwise considered to be negligible, as is any transport between the upper and lower layers of the model.

The level-3 moisture balance is calculated from

$$(q_3)$$
 = (q_3) + (Δq_3) TOTAL (2.112)

where (Δq_3) is the sum of the level-3 moisture changes due to TOTAL middle-level convection, CM, or penetrating convection, CP, large-scale condensation, LS, and evaporation, E. Thus the expression for the moisture-source term of Eq. (2.35) becomes

$$2 \operatorname{mng}(E - C) = \frac{11}{5\Delta t} (\Delta q_3)_{\text{TOTAL}}$$

$$= \frac{11}{5\Delta t} \left[(\Delta q_3)_E - (\Delta q_3)_{\text{LS}} - (\Delta q_3)_{\text{CM}} - (\Delta q_3)_{\text{CP}} \right] \qquad (2.113)$$

The ground water is carried as the variable GW, which varies between 0 for dry ground and 1 for saturated ground. For ocean, ice, or snow, GW is always considered to be 1. This quantity is used in the determination of ground temperature and evaporation, and is recalculated (for land) after the level-3 moisture balance has been determined. If (Δq_3) is negative (a decrease in level-3 moisture), enough pre-TOTAL cipitation occurs for runoff to be calculated. If the ground is not saturated (GW < 1) then the runoff is taken as 0.5 GW; if the ground is saturated, the runoff is taken as unity. The new ground wetness is then given by

$$(GW)_{\text{new}} = (GW)_{\text{old}} + (1 - \text{runoff})(\Delta q_3)_{\text{TOTAL}} \frac{1}{GWM} \frac{\pi}{2g}$$
 (2.114)

where GWM is the maximum mass of water per unit area which the ground can absorb (here assumed to be $30~\rm g/cm^2$), and the factor $\pi/2g$ is the air mass in a vertical column of unit area in the lower model layer. If (Δq_3) is not negative, because evaporation is greater than pre-TOTAL cipitation; the runoff is zero and Eq. (2.114) represents the net decrease of moisture at the ground. If $(GW)_{new} < 0$ then $(GW)_{new}$ is set to zero, and if $(GW)_{new} > 1$ it is set to 1.

6. Clouds

The type of clouds present in the model depends upon which condensation and/or convection processes have occurred. The amount of cloud cover depends upon the relative humidity at level 3, RH₃, for convective clouds, whereas a complete overcast is assumed for clouds caused by large-scale condensation. Figure 2.2 shows the assumed physical dimensions of the various cloud types. Although the clouds are only parameterized entities as far as the moisture is concerned, they must have physical dimensions for the radiation calculations. In the present version of the program, type-1 clouds cannot coexist with other types in any given grid cell; types 2 and 3 may coexist.

Type-1 clouds may be described as towering cumulus, having their bases at level 3 and their tops at level 1. They exist if either middle-level or penetrating convection occurs. The amount of cloud cover (given as the fraction of the sky covered with clouds) is defined by $CL = -1.3 + 2.6 \text{ RH}_3$. If $CL \le 0$ the sky is defined to be clear. This convection therefore does not create clouds unless the relative humidity at level 3 is greater than 50 percent. If CL > 1 it is reset to 1, implying a completely cloudy sky.

Type-2 clouds may be described as a heavy overcast with base at level 3 and top at level 2. They exist if large-scale condensation takes place (as described in Subsection F.2 above), and if type-1 clouds do not exist (since strong convection would destroy these clouds).

Fig. 2.2 -- Schematic representation of convective cloud types. Type-1 cloud represents either penetrating or middle-level convection and is assumed to extend from level σ_3 to σ_1 , type-2 cloud represents large-scale condensation and is assumed to extend from level σ_3 to σ_2 , and type-3 cloud represents low-level cumulus convection and is assumed to be confined to level σ_3 itself.

When type-2 clouds are present they always form a completely overcast sky -- i.e., CL = 1 or 0.

Type-3 clouds may be described as shallow cumulus with bases and tops both at level 3. They exist if there is low-level convection but no penetrating convection. The cloud amount is again defined as $CL = -1.3 + 2.6 \text{ RH}_3$, with CL reset to 1 if CL > 1 and with $CL \le 0$ meaning a clear sky. This cloud type could possibly coexist with type 2, but if so it would not affect the radiation, since cloud type 2 is a complete overcast in the same region.

7. Effective Water-Vapor Content

To determine the effect of the moisture on radiation we must estimate the entire vertical profile of q from the single value q_3 . The q_3 value used here is a revised one, including the effects of largescale condensation, but not including changes due to convective condensation or evaporation. If $q_3 < 10^{-5}$ it is set equal to 10^{-5} . Above 120 mb the vapor pressure is assumed to be constant with height, with the value 0.3316 dynes/cm² corresponding to the frost-point temperature 190 deg K, as suggested by Murgatroyd (1960). Thus

$$q \approx 0.622 \left(\frac{0.3316}{p_{cgs}}\right) = \frac{.206255}{p_{cgs}}$$
, p < 120 mb (2.115)

where p_{cgs} is pressure in cgs units (dynes/cm²). Below 120 mb it is assumed that

$$\frac{q}{q_3} - \left(\frac{p}{p_3}\right)^{K(p_3, q_3)}, \quad p \ge 120 \text{ mb}$$
 (2.116)

where K is evaluated by matching q from Eqs. (2.115) and (2.116) at the 120-mb level

$$K(p_3, q_3) = \frac{6\pi (q_3/1.7188 \times 10^{-6})}{6\pi (p_3/120 \text{ mb})}$$
 (2.117)

The effective water-vapor amount per unit area in a vertical column below a given level, n, with a pressure-broadening correction term included, is defined to be

$$u_n^* = \int_{z_4}^{z_n} \rho\left(\frac{p}{p_o}\right) q \, dz = \frac{1}{g} \int_{p_n}^{p_4} \left(\frac{p}{p_o}\right) q \, dp \qquad (2.118)$$

Combined with the values of q defined above, this becomes, for level n,

$$u_n^* = \frac{q_3(p_3)^2}{gp_0(2+K)} \left[\left(\frac{p_4}{p_3} \right)^{2+K} - \left(\frac{p_n}{p_3} \right)^{2+K} \right]$$
 (2.119)

and for the entire atmospheric column, including the stratosphere, the effective water-vapor content becomes

$$u_{\infty}^{*} = \frac{q_{3}(p_{3})^{2}}{gp_{0}(2+K)} \left[\left(\frac{p_{4}}{p_{3}} \right)^{2+K} - \left(\frac{p_{(120 \text{ mb})}}{p_{3}} \right)^{2+K} \right] + 2.526 \times 10^{-5}$$
 (2.120)

where the additive term is the effective vapor amount above 120 mb, and where q_3 is set equal to 10^{-5} if it is $< 10^{-5}$. The effective vapor content of clouds is described in the following section.

G. RADIATION AND HEAT BALANCE

In this section the heat budget of the earth/atmosphere system is discussed and the expressions which are used to evaluate the diabatic-heating terms in the thermodynamic equations, (2.31) and (2.32), are developed, together with those expressions used to determine the surface temperature over land and over ice-covered oceans.

In addition to being partly determined by the release of latent heat during convection (see Subsection F.3), the net heating rate at level 1 (σ = 1/4) is also determined by the amount of solar radiation absorbed by, and the long-wave radiation emitted from, the layer σ = 0

to $\sigma=1/2$. The heating rate at level 3 ($\sigma=3/4$) is determined by the flux of sensible heat from the surface and the release of latent heat in large-scale condensation (Subsection F.2), in addition to the absorbed and emitted radiation and the convective latent heating in the layer $\sigma=1/2$ to $\sigma=1$. The treatment of the short-wave (solar) radiation and the long-wave (terrestrial) radiation used in the model follows the discussion of Arakawa, Katayama, and Mintz (1969). The so-called short-wave radiation includes all the solar radiation, regardless of wavelength, and the parameterization for the attenuation of this radiation by Rayleigh scattering, for its reflection from the earth's surface and from clouds, and for its absorption in the atmosphere and in clouds is given in Subsection G.1. The treatment of the flux of long-wave radiation, which includes all that which is emitted by the atmosphere, clouds, and the earth's surface, is given in Subsection G.2.

The ground temperature, T_{gr}, needed to evaluate the evaporation, the sensible heat flux from the surface, and the net long-wave surface radiation is determined from the heat balance at the earth's surface in Subsection G.3, and in Subsection G.4 a discussion of the heat balance in the atmosphere and the expressions for the temperature change due to diabatic heating are given.

1. Short-Wave Radiation

The incoming solar radiation is immediately divided into two parts, that of wavelength $\lambda < 0.9\mu$, which is assumed to be subject to Rayleigh scattering only, and that of wavelength $\lambda \geq 0.9\mu$, which, in a clear atmosphere, is assumed to be subject to absorption only. The actual wavelength does not again enter into the model's treatment of radiation. The two parts of the radiation are designated S_0^s (part subject to scattering) and S_0^A (part subject to atmospheric absorption), and are approximated as

$$S_0^8 = 0.651 S_0 \cos \zeta$$
 (2.121)

$$S_0^A = 0.349 S_0 \cos \zeta$$
 (2.122)

where S_0 is the solar constant (adjusted for the earth/sun distance), and ζ is the zenith angle of the sun. The rationale for this partitioning is described by Joseph (1966). A summary of the disposition of these components of the short-wave radiation for both clear and cloudy skies is given in Figs. 2.3 and 2.4, and is described in detail in the following paragraphs.

a. Albedo. The albedo of the clear atmosphere for the portion of the radiation assumed subject to (Rayleigh) scattering is given by

$$\alpha_0 = \min \{1, 0.085 - 0.247 \log_{10}[(p_g/p_o) \cos \zeta]\}$$
 (2.123)

as deduced by Katayama using the estimate of Joseph (1966). For an overcast atmosphere, the albedo for the scattered part of the radiation is composed of the contributions of Rayleigh scattering (by atmospheric molecules) and of Mie scattering (by cloud drops). The simplest useful formulation adopted by Katayama is

$$\alpha_{ac} = 1 - (1 - \alpha_{o})(1 - \alpha_{c_{i}})$$
 (2.124)

where α_{c_1} is the cloud albedo (for both S_0^A and S_0^S), which is assumed to be given by

$$\alpha_{c_1} = 0.7$$
 for cloud type 1

 $\alpha_{c_2} = 0.6$ for cloud type 2 (2.125)

 $\alpha_{c_3} = 0.6$ for cloud type 3

The various cloud types are discussed in Subsection F.6 below.

In the program, the expression p_s/p_o in Eq. (2.128) was inadvertently coded as $(p_s-p_T)(p_o-p_T)^{-1}$; see instruction 10450 in COMP 3 in the listing of Chapter VII. This error, which is not thought to be serious, was brought to our attention by A. Katayama.

Fig. 2.3 -- Short-wave radiation in a clear atmosphere. The solid arrows indicate the path of radiative flux, while the dashed lines indicate a region of the atmosphere in which interaction occurs or in which a diffuse path is followed. The absorbed radiation $A_1 = S_T^A - S_2^A \text{ and } A_3 = S_2^A - S_4^A, \text{ according to (2.136)}.$ The program (FORTRAN) symbols are given in parentheses following certain of the physical symbols.

Fig. 2.4 -- Short-wave radiation in an overcast atmosphere, illustrated for cloud type 1. The absorbed radiation $A_1 = S_1^A - S_2^A - S_1^A = \frac{1}{1} c_1$ according to (2.141), and $A_3 = S_2^A - S_4^A$ according to (2.136). See also Fig. 2.3.

The ground albedo α_g (again for both S_0^A and S_0^S) is taken as

$$\alpha_g = 0.07$$
 for ocean

= 0.14 for land

= 0.45{1 + (CLAT - 10)^2/[(CLAT - 30)^2 + (CLAT - 10)^2]} (2.126)^2
for south-polar ice and snow

= 0.40{1 + (CLAT - 5)^2/[(CLAT - 45)^2 + (CLAT - 5)^2]}
for north-polar ice and snow

These values for land, ice, and snow were developed by Katayama (1969) as approximations to the data of Posey and Clapp (1964). In the expressions for polar ice and snow, CLAT is the number of degrees poleward from the assumed northern or southern snowline (as appropriate) given by the functions SNØWN and SNØWS. The expression for north-polar ice and snow applies also for ice at latitudes between the two snow lines, with CLAT = 0.

b. The Radiation Subject to Scattering (S_0^s) . The part of the solar radiation which is assumed to be scattered does not interact with the atmosphere, except to be partly scattered back to space. Thus the only part with which we are concerned is that amount which reaches, and is absorbed by, the earth's surface. This is given by the expressions

$$S_g^{s'} = S_o^s (1 - \alpha_g) (1 - \alpha_o) / (1 - \alpha_o \alpha_g)$$

$$for clear sky$$

$$S_g^{s''} = S_o^s (1 - \alpha_g) (1 - \alpha_{ac}) / (1 - \alpha_{ac} \alpha_g)$$

$$for overcast sky$$
(2.127)

Multiple reflections between sky and ground or between cloud base and

These expressions are coded incorrectly in the program; see instructions 23720 and 23760, Chapter VII.

ground are accounted for by the terms in the denominators (see Joseph, 1966). For partly cloudy conditions (neither clear nor overcast) the scattered radiation absorbed at the earth's surface is

$$S_g^s = CL S_g^{s''} + (1 - CL)S_g^{s'}$$
 (2.128)

where CL is the fractional cloudiness of the sky (see Subsection F.6). The absorption of this radiation by the ground affects the ground temperature, and subsequently affects the long-wave emission from the ground and the ground-level heat balance (see Figs. 2.3 and 2.4).

c. The Radiation Subject to Absorption S_0^A . The solar radiation subject to absorption is distributed as heat to the various layers in the atmosphere and to the earth's surface. The absorption is assumed to depend only upon the effective water-vapor content S_0^A in a layer -- a quantity calculated from the model as previously outlined (see Subsection F.7). The absorptivity of a layer is given by the empirical formula

$$A(u^*,\zeta) = 0.271(u^* \sec \zeta)^{0.303}$$
 (2.129)

Here the (dimensionless) coefficient 0.271 has been found by increasing the (dimensional) coefficient 0.172 ly min⁻¹ of the Mügge-Möller absorption formula by 10 percent, as suggested by Manabe and Möller (1961), and then dividing by the total radiative flux subject to absorption, which is given by $0.349S_0 = 0.698$ ly min⁻¹ according to Eq. (2.122).

For clear sky the flux of So transmitted to a level n is given by

$$S_n^{A'} = S_o^A[1 - A(u_{\infty}^* - u_{n}^*, \zeta)]$$
 (2.130)

and the flux absorbed in a layer between an upper level, i, and a lower level, j, is given by

$$A_{\underline{i+j}} = S_{\underline{i}}^{A'} - S_{\underline{j}}^{A'}$$
 (2.131)

For a cloudy sky the absorption in a cloud is calculated by assuming an equivalent water-vapor content which will absorb the same amount of radiation as would the cloud itself. These amounts are assumed in the present version of the model to be

$$u_{c_1}^{*} = 65.3 \text{ g/cm}^2$$
 for cloud type 1
 $u_{c_2}^{*} = 65.3 \text{ g/cm}^2$ for cloud type 2 (2.132)
 $u_{c_3}^{*} = 7.6 \text{ g/cm}^2$ for cloud type 3

The incoming beam becomes diffuse in the cloud, and its path is assumed to be 1.66 times the vertical thickness of the cloud. Below the cloud the beam is still diffuse, and the factor 1.66 for path length is retained. Therefore we have the following expressions for the downward flux at various levels

$$S_{1}^{A''} = S_{0}^{A} \left[1 - A(u_{\infty}^{+} - u_{1}^{+}, \zeta) \right]$$
above the cloud at level 1

$$S_{m}^{A''} = S_{o}^{A}(1 - \alpha_{c}) \left\{ 1 - A \left[(u_{m}^{*} - u_{CT}^{*}) \sec \zeta + 1.66 \frac{\Delta p_{m}}{\Delta p_{c}} u_{c}^{*} \right] \right\}^{+}$$
inside a cloud at level m

$$S_{j}^{A''} = S_{o}^{A}(1 - \alpha_{c}) \left\{ 1 - A \left[(u_{\infty}^{*} - u_{CT}^{*}) \sec \zeta + 1.66(u_{c}^{*} + u_{CB}^{*} - u_{j}^{*}) \right] \right\}$$
below a cloud at level j (2.135)

The fraction $\Delta p_m/\Delta p_c$, which is equal to 1/2 when m = 2 and type-1 clouds are present, has been inadvertently omitted from the model's present FORTRAN program.

where subscripts CT and CB rafer to the cloud top and cloud bottom, respectively, Δp_c is total pressure thickness of the cloud, and Δp_m is the pressure thickness of the cloud above level m. The factor $(1-\alpha_c)$ accounts for raflection from the cloud top.

The flux absorbed in a layer in a cloudy sky will, in general, be $A_{\underline{i+j}} = S_{\underline{i}}^{A''} - S_{\underline{j}}^{A''}$, in a fashion similar to Eq. (2.131) for clear sky.

If there is a cloud top anywhere within a layer, however, the flux absorbed by that layer will not be just the flux difference at the levels above and below the layer, since there will be a flux reflected from the cloud top and therefore lost. Thus, for the layer between levels i and j, the absorbed radiation is given by

$$A_{\underline{i+j}} = S_{1}^{A''} - S_{j}^{A''} - S_{CT}^{A''} \alpha_{c}$$
 (2.136)

where the last term is the flux reflected from the cloud top. When the sky is partly cloudy, the total flux at level i is given by a weighted average of the clear and overcast fluxes:

$$S_{i}^{A} = CL S_{i}^{A''} + (1 - CL)S_{i}^{A'}$$
 (2.137)

That part of the flux subject to absorption which is actually absorbed by the ground is given by

$$(1 - \alpha_g) S_4^{A'} \equiv S_g^{A'}$$
 (2.138)

for clear sky, and by

$$\frac{(1-\alpha_{\mathbf{g}})S_{\mathbf{4}}^{\mathbf{A}''}}{1-\alpha_{\mathbf{c}}\alpha_{\mathbf{g}}} \equiv S_{\mathbf{g}}^{\mathbf{A}''}$$
 (2.139)

for completely cloudy (overcast) sky, where the factor $1/(1-\alpha_c\alpha_g)$ again accounts for multiple reflections between the ground and cloud base. For partly cloudy skies, the radiation absorbed by the ground is the sum

$$S_g^A = CL S_g^{A''} + (1 - CL)S_g^{A'}$$
 (2.140)

The total solar radiation absorbed by the ground will be the sum of that part of the solar radiation subject to (atmospheric) absorption that is absorbed instead by the ground and that part subject to scattering (atmospheric) that is absorbed by the ground. Thus, from Eqs. (2.128) and (2.140), we have

$$S_g = S_g^A + S_g^S$$
 (2.141)

2. Long-Wave Radiation

The calculation of the long-wave radiation, like that of the short-wave radiation, is based on an empirical transmission function depending primarily upon the amount of water vapor. The net upward long-wave radiation at a level i can be expressed as the sum of three terms

$$R_{1} = R_{A} + R_{B} + C_{1} \tag{2.142}$$

where R_A is the radiative flux downward from the atmosphere above the level i, and R_B is the flux from below. The term C_1 was intended to be a correction term accounting for a possible large temperature difference between the level-4 air temperature, T_4 , and the ground surface temperature, T_g . However, in the early stages of evolution of the Mintz-Arakawa program the two temperatures were assumed to be equal, and both were designated in the program with the same symbol. At the time the program was modified to calculate the two separately, a programming error was made whereby the terms were not changed consistently. In several statements the ground temperature, T_g , is used

in place of the air temperature T_4 , and in the ground temperature correction term, C_1 , the values of ground temperatures before and after the heating cycle (T_g, T_{gr}) are used in place of T_4 and T_{gr} .

In this Report we have described what the program actually does, rather than what was intended. Those equations in which T was used in place of T₄ are indicated throughout Subsections G.2 and G.3 by the symbol +. In future work, the program will be corrected and the effects of this error will be investigated.

The term C_1 in Eq. (2.142) is thus now apparently a "correction" involving the change in the ground temperature during the heating time interval. This term depends upon all the various heat-exchange mechanisms in the program, including the other terms involving long-wave radiation. Therefore $R_A + R_B$ is calculated first and the C_1 term is left until later (see Subsection G.3). A schematic overview of the long-wave radiation balance is given in Fig. 2.5.

The fluxes at level i are given by the expressions

$$R_{\mathbf{A}} = \sigma T_{\mathbf{1}}^{4} \overline{\tau}_{\mathbf{A}} \tag{2.143}$$

$$R_{B} = (\sigma T_{g}^{4} - \sigma T_{1}^{4}) \overline{\tau}_{B}$$
 (2.144)+

where σ is here the Stefan-Boltzman constant, and the empirical transmission functions are given by

$$\overline{\tau}_{A} = \tau (u_{\infty}^{\dagger} - u_{1}^{\dagger}) \tag{2.145}$$

$$\overline{\tau}_{B} = \frac{1 + \tau(u_{1}^{*})}{2} \tag{2.146}$$

with

$$\tau(u^*) = 1/(1 + 1.75u^{*0.416})$$
 (2.147)

Fig. 2.5 -- Long-wave radiation in a clear atmosphere. See also Fig. 2.3.

as found by Katayama for the Callendar water-vapor transmission function. Here u^* is the effective vapor content defined in Subsection F.7. For a clear sky, if we define $R_1' \equiv R_A + R_B$, we have at the three levels $\sigma = 0$ (i = 0), $\sigma = 1/2$ (i = 2), and $\sigma = 1$ (i = 4), where radiation is determined by:

$$R_0^{\dagger} = \sigma T_0^4 \tau (u_{\infty}^{\dagger} - u_0^{\dagger}) + (\sigma T_g^4 - \sigma T_0^4) \frac{1 + \tau (u_0^{\dagger})}{2}$$
 (2.148)+

$$R_{2}^{\prime} = \sigma T_{2}^{4} \tau (u_{\infty}^{*} - u_{2}^{*}) + (\sigma T_{g}^{4} - \sigma T_{2}^{4}) \frac{1 + \tau (u_{2}^{*})}{2}$$
 (2.149)

$$R_4' = \sigma T_g^4 \tau(u_{\infty}^*)$$
 (2.150)+

Here the primes indicate a clear sky. To account for the absorption by CO₂, which is not included in the above expressions, the model incorporates a number of empirical modifications [due to Katayama (1969)] of the long-wave fluxes. We thus redefine the clear-sky fluxes given above as

$$R_0' = 0.820R_0'$$
 (2.151)

$$R_2' = 0.736R_2'$$
 (2.152)

$$R_{4}^{\dagger} = \sigma T_{g}^{4} \left[0.6 \sqrt{\tau(u_{\infty}^{*})} - 0.1 \right]$$
 (2.153)+

which are the clear-sky expressions used in the program. The expression for R_{Λ}^{\prime} is similar to Brunt's formula.

Clouds are treated as opaque black bodies, and the cloud cover may consist of any of the model's three cloud types. Including empirical corrections, one uses the following expressions for the radiation in

completely overcast skies. For cloud type 1 (top at level 1, bottom at level 3)

$$R_0'' = 0.820 \left[\sigma T_0^4 \tau (u_\infty^* - u_0^*) + (\sigma T_1^4 - \sigma T_0^4) \frac{1 + \tau (u_0^* - u_1^*)}{2} \right]$$
 (2.154)

$$R_2'' = 0$$
 (2.155)

$$R_4'' = 0.85(\sigma T_g^4 - \sigma T_3^4) \left[1 + 3\tau(u_3^*) \right] / 4$$
 (2.156)+

where the double primes indicate an overcast sky and $R_i'' \equiv R_A + R_B$. For cloud type 2 (top of cloud at level 2, bottom at level 3),

$$R_0'' = 0.820 \left[\sigma T_0^4 \tau (u_\infty^{\dagger} - u_0^{\dagger}) + (\sigma T_2^4 - \sigma T_0^4) \frac{1 + \tau (u_0^{\dagger} - u_2^{\dagger})}{2} \right]$$
 (2.157)

$$R_2'' = [0.736\sigma T_2^4 \tau (u_{\infty}^{\dagger} - u_2^{\dagger})]/2^{\dagger}$$
 (2.158)

 R''_{A} = same as for cloud 1 [Eq. (2.156)]

For cloud type 3 (top and bottom at level 3):

$$R_0^{"} = 0.820 \left[\sigma T_0^4 \tau (u_{\infty}^{\dagger} - u_0^{\dagger}) + (\sigma T_3^4 - \sigma T_0^4) \frac{1 + \tau (u_0^{\dagger} - u_3^{\dagger})}{2} \right]$$
 (2.159)

$$R_{2}^{"} = 0.736 \left[\sigma T_{2}^{4} \tau (u_{\infty}^{*} - u_{2}^{*}) + (\sigma T_{3}^{4} - \sigma T_{2}^{4}) \frac{1 + \tau (u_{0}^{*} - u_{3}^{*})}{2} \right]$$
 (2.160)

 $R_{\Delta}^{"}$ = same as for cloud type 1 [Eq. (2.156)]

[†]This R'' is divided by 2 because the cloud top is assumed to be an irregular surface lying half-above, half-below level 2.

If we now define \tilde{R}_1 as the net upward long-wave radiation for partly cloudy skies prior to the ground-temperature correction, R_1' and R_1'' combine to give

$$\tilde{R}_{i} = (1 - CL)R_{i}^{i} + (CL)R_{i}^{ii}$$
 (2.161)

where CL is the fractional cloudiness (see Subsection F.6).

Finally, after the ground temperature has been determined using \widetilde{R}_1 and the calculated short-wave radiation (among other quantities, as described in Subsection G.3 below), the long-wave radiation is calculated in its complete form R_1 by applying the correction (C) given at level 4 by

$$C_4 = 4\sigma T_g^3 (T_{gr} - T_g)$$
 (2.162)+

where $4\sigma T_g^3(T_g-T_g)$ is an approximation to $\sigma(T_{gr}^4-T_g^4)$. The complete long-wave flux at level 4 is thus given, according to Eq. (2.96), by

$$R_4 = \tilde{R}_4 + C_4 = (1 - CL)R_4' + (CL)R_4'' + 4\sigma T_g^3 (T_{gr} - T_g)$$
 (2.163)+

At levels 2 and 0 the complete long-wave flux is similarly given by

$$R_2 = \tilde{R}_2 + C_2 = \tilde{R}_2 + 0.8(1 - CL)C_4^{\tau}(u_2^{*})$$
 (2.164)

$$R_0 = \tilde{R}_0 + C_0 = \tilde{R}_0 + 0.8(1 - CL)C_4 \tau(u_0^*)$$
 (2.165)

where \hat{R} is given by Eq. (2.161) and C_4 by (2.162), and where the coefficient 0.8 is the correction factor for CO_2 absorption. These are the long-wave radiation fluxes calculated in the program as the net transfers at the levels 4, 2, and 0, and are used in the preparation of the

long-wave radiative budgets for the layers 0 to 2 and 2 to 4 as well as for the surface (level-4) radiation budget in the output programs (see Chapter IV). The various components of these long-wave fluxes are summarized in Fig. 2.6.

3. Heat Balance at the Ground

The ground temperature, T gr, as corrected for surface radiation and as used to find the ewaporation, is itself obtained from the heat balance at the ground. The treatment of the heating of the ground depends first of all upon the character of the ground or underlying surface.

If the surface is ice-free ocean, it is considered to be an infinite heat reservoir whose surface temperature, T_g , is a specified function of position and does not change during the heating time interval (5 Δ t). The new ground temperature, T_g , is set equal to the old T_g .

Where the surface is bare land, snow-covered land, or ice-covered land, the ground is considered to be a perfect insulator with zero heat capacity. For these types of ground, the total flux of heat across the air/ground interface must be zero, according to

$$R_4 + \Gamma + H_E - S_g = 0$$
 (2.166)

where R_4 is the long-wave radiation emitted from the surface, Γ is the sensible heat flux from the surface, H_E is the flux of latent heat due to evaporation from the surface, and S is the solar radiation absorbed by the ground.

For ice-covered ocean, the surface heat balance is modified to include conduction of heat through the ice, \tilde{B} , in which case Eq. (2.166) is changed to read

$$R_4 + \Gamma + H_E - S_g = \tilde{B} = B(T_o - T_{gr})$$
 (2.167)+

Fig. 2.6 -- Long-wave radiation in an overcast atmosphere (cloud types 1, 2, or 3). See also Fig. 2.3.

where T_o equals the freezing point of seawater (273.1 deg K). Equation (2.167) is applicable to the land, snow- and ice-covered land surfaces too, if we define B = 0 for these locations; for sea ice the conduction coefficient B is equal to 1.44 ly day⁻¹ deg⁻¹, found from an assumed thermal conductivity of 0.005 ly cm sec⁻¹ deg⁻¹ and an ice thickness of 300 cm. Note that, except for the solar radiation, these heating terms depend upon the as-yet-undetermined new value of the ground temperature, T_{gr}, as well as upon the old value, T_g, upon the temperature of the air, T₄, or upon the freezing point of sea water, T_o.

The heating terms are given by

$$R_4 = \tilde{R}_4 + \sigma(T_{gr}^4 - T_g^4)$$
 (2.168)+

where \tilde{R} is the long-wave radiation without the ground-temperature correction as given by Eq. (2.161) and $\sigma(T_{gr}^4 - T_g^4)$ is the "correction" term. (See, however, Subsection G.2.) The sensible (turbulent) heat flux, Γ , is given by

$$\Gamma = C_{\Gamma}(T_{gr} - T_4)$$
 (2.169)

where

$$^{C}_{\Gamma} = \rho_{4}^{C}_{D}^{C}_{D}^{W} \tag{2.170}$$

where W is the surface wind speed, as corrected for gustiness in Eq. (2.78). The latent heat flux is given by

$$H_{E} = LE = C_{\Gamma} \frac{L}{c_{p}} \left\{ GW \left[q_{s}(T_{g}) + \frac{dq_{s}(T_{g})}{dT} (T_{gr} - T_{g}) \right] - q_{4} \right\}$$
 (2.171)

where Eqs. (2.108) and (2.109) have been used to evaluate the evaporation. Substituting Eqs. (2.168), (2.169), and (2.171) for R_4 , Γ , and H_E into the heat-balance equation, (2.167), and approximating $\sigma(T_{gr}^4 - T_g^4) \text{ by } 4\sigma T_g^3(T_{gr} - T_g), \text{ we can solve for the unknown ground temperature } T_{gr}.$ Thus, we have

$$T_{gr} = \frac{C_{\Gamma} \left(T_{4} + \frac{L}{c_{p}} \left\{ q_{4} + GW \left[\frac{dq_{g}(T_{g})}{dT} T_{g} - q_{g}(T_{g}) \right] \right\} \right) + S_{g} - \widetilde{R}_{4} + 4\sigma T_{g}^{4} + BT_{o}}{C_{\Gamma} \left[1 + \frac{L}{c_{p}} \frac{dq_{g}(T_{g})}{dT} GW \right] + 4\sigma T_{g}^{3} + B}$$
(2.172)+

Having found T_{gr} , we can complete the calculation of the individual radiation and heating terms R_4 (and R_2 , R_0 as in Subsection G.2), Γ and H_E from Eqs. (2.167) to (2.171), and the surface evaporation, E, from Eq. (2.108). The equations are applicable to an ocean surface as well as to land, ice, and snow: for oceans, $T_{gr} = T_{g}$, some of the terms will be zero, and there will be no correction terms for the long-wave radiation; for ice and snow, if the calculated value of T_{gr} is greater than T_{gr} (= 273.1 deg K) it is set equal to T_{gr} .

4. Heat Budget of the Atmosphere

The heat balance is maintained at the ground through the calculated ground temperature (see previous section), and at the levels 3 and 1 by means of the diabatic heating terms on the right-hand sides of Eqs. (2.31) and (2.32). After the temperature changes due to convective adjustment (see Subsection F.1), no further change is made until the end of all the radiation— and moisture—balance calculations. Then the change in temperature over the interval $5\Delta t$ at levels 3 and 1 is given by

$$H_{3} = 5\Delta t \dot{H}_{3}$$

$$= (A_{3} + R_{4} - R_{2} + \Gamma)(2g/\pi c_{p})5\Delta t + (\Delta T_{3})_{CM} + (\Delta T_{3})_{CP} + (\Delta T_{3})_{LS}$$
(2.173)

$$H_{1} = 5\Delta t \dot{H}_{1}$$

$$= (A_{1} + R_{2} - R_{0})(2g/\pi c_{p})5\Delta t + (\Delta T_{1})_{CM} + (\Delta T_{1})_{CP}$$
(2.174)

Here A_1 and A_3 are the net absorption of solar radiation at the levels 1 and 3 (see Subsection G.1), $R_4 - R_2$ and $R_2 - R_0$ are the long-wave radiation absorbed in the layers 4-2 and 2-0 (see Subsections G.2 and G.3), and Γ is the sensible heat flux (see Subsection G.3). The (ΔT) terms are the latent heat released during large-scale condensation (LS) [Eq. (2.47)], middle-level convection (CM) [Eqs. (2.73) and (2.74)], and penetrating convection (CP) [Eqs. (2.101) and (2.102)] (see Subsections F.2 and F.3). The factor ΔT is the time interval between heating calculations, and together with the factor $2g/\pi c$ converts the heating rate to the layers' temperature change.

There is some smoothing of the heating as given by Eqs. (2.173) and (2.174) in both the vertical and horizontal directions before the temperatures T_1 and T_3 are redefined at the end of the time interval. The average heating, $H = 1/2(H_1 + H_3)$, is first weighted according to the area of the grid cell surrounding the π point, and is then subjected to a 9-point areal smoothing with the central heating value weighted by 1/4, the four values to the north, south, east, and west each weighted by 1/8, and the four values to the northeast, northwest, southeast, and southwest each weighted by 1/16. If we denote the result of this smoothing operation on H by H^A , the final temperatures, after correction for diabatic heating at levels 1 and 3, are determined from

$$T_1 = T_1' + \frac{H_1}{2} - \frac{H_3}{2} + \overline{H}^A$$
 (2.175)

$$T_3 = T_3' + \frac{H_3}{2} - \frac{H_1}{2} + \overline{H}^A$$
 (2.176)

where T_1' and T_3' are the temperatures at levels 1 and 3 before the correction for diabatic heating.

Preceding page blank

III. MODEL DESCRIPTION -- NUMERICS

Equations (2.27) to (2.33) and Eq. (2.35) form a set of eight v_3 , T_1 , T_3 , π , and q_3). The time-extrapolation method and the horizontal finite-difference schemes used to solve these equations were developed by Professor Arakawa at UCLA and are discussed in the following sections. For convenience, Eqs. (2.27) to (2.33) and Eq. (2.35) have been restated in Tables 3.1 to 3.4 and Table 3.6, where the subsections describing the numerical treatment of each term are indicated, along with the location in the FORTRAN program where each term is evaluated. The diagnostic equation for the vertical velocity [Eq. (2.34)] is given a similar treatment in Table 3.5. In the present chapter, particular attention has been given to the preparation of a systematic statement of the precise finite-difference approximations actually used in the programmed numerical solution of the model. The smoothing procedures, provisions for global mass conservation, and the various parameters and constants used in the model are also summarized here.

A. TIME FINITE DIFFERENCES

1. The General Scheme of Time Extrapolation

From the equations in Tables 3.1 to 3.4 and Table 3.6, we can obtain expressions for the tendencies of the dependent variables ($\psi = u_1$, ...) at the point ij in the general form

$$\left[\frac{\partial (\Pi \psi)}{\partial t}\right]_{1j} = D_{\psi} + S_{\psi}$$
 (3.1)

while the pressure-tendency equation is written in the form

$$\left[\frac{\partial \Pi}{\partial \mathbf{t}}\right]_{\mathbf{i}\mathbf{j}} = D_{\mathbf{m}} \tag{3.2}$$

Table 3.1

DESCRIPTION OF THE ZONAL (u) MOMENTUM EQUATIONS

Horizontal Advection of u Momentum

Table 3.2

DESCRIPTION OF THE MERIDIONAL (v) MOMENTUM EQUATIONS

	v Momentum Tendency	Horizontal Advection of v Momentum	Vertical Advection of v Momentum	Coriolis Force	Pressure-Gradient Force	Friction Term	
Eq. (2.28):	$\frac{\partial}{\partial \mathbf{r}}$ (IIv) =	$-\frac{3}{8} \left(u_1^* v_1 \right) - \frac{3}{8} \left(v_1^* v_1 \right)$	n	- "u1F	$- m \left[\frac{3\phi_1}{3y} + \sigma_1^{\pi\alpha_1} \frac{3\pi}{3y} \right]$	+ 11FY	1
Eq. (2.30):	$\frac{\partial}{\partial t}$ ($\mathbb{I}v_3$) =	$-\frac{3}{3x}(u_3^*v_3)-\frac{3}{3y}(v_3^*v_3)$	+ \$ v ₂	- Tu3F	$= m \left[\frac{3\phi_3}{3y} + \frac{\sigma_3 \pi \alpha_3}{3} \frac{3\pi}{3y} \right]$	+ IIFY	-61-
Program Reference	STEP (1850-2280)	COMP 1 (3750-4120)	COMP 1 (4690-4830)	COMP 2 (5010-5200)	COMP 2 COMP 2 (5450-5690) (5710-6050)	COMP 3	
Text Reference	III.A. (1-4)	111.6.3	111.6.4	111.6.5	III.C.6	III.C.10	

Table 3.3

DESCRIPTION OF THE THERMODYNAMIC ENERGY EQUATION

	Temperature Tendency	Horizontal Advection of Temperature	Energy Conversion Terms	Diabatic Heating Term
Eq. (2.31):	$\frac{3}{3t}$ (TI ₁) =	$-\frac{3}{3x} (u_1^* T_1) - \frac{3}{3y} (v_1^* T_1)$	$-\binom{p_1}{p_0} + \frac{\sigma_1 \alpha_1}{c_p} + \frac{3\pi}{3\epsilon} + \frac{\sigma_1 \alpha_1}{c_p} \left[u_1^* \frac{3\pi}{3x} + v_1^* \frac{3\pi}{3y} \right]$	*#" °°
	Eq. (2.32): $\frac{3}{3t}$ (TT ₃) =	$-\frac{3}{3x}(u_3^*T_3) - \frac{3}{3y}(v_3^*T_3) + (\frac{P_3}{P_0})^*$	$+ {p \choose p} = + \frac{\sigma_3 a_3}{c_p} + \frac{3\pi}{3\epsilon} + \frac{3\pi}{c_p} {a_3 a_3 a_3 a_4 a_3 a_5 a_7 a_5 a_7 a_5 a_7 a_5 a_7 a_5 a_7 a_5 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7$	
rogram R efer ence	STEP (1850-2280)	CONP 1 (3250-3730)	COMP 1 (4560-4670) COMP 2 (6070-6370)	COMP 3 (11280-11480)
ext Reference	III.A. (1-4)	111.6.7	III.C.8	111.6.12

Table 3.4

DESCRIPTION OF THE PRESSURE-TENDENCY EQUATION

	Pressure Tendency	Mass Convergence at the Upper Level	Mass Convergence at the Lower Level
Eq. (2.33):	e se	$-\frac{1}{2}\left(\frac{\partial}{\partial x} u_1^* + \frac{\partial}{\partial y} v_1^*\right)$	$-\frac{1}{2}\left(\frac{3}{3x}u_3^*+\frac{3}{3y}v_3^*\right)$
Program Reference	STEP (1850-2280)	COMP 1 (4130-4541)	130-4540)
Text Reference	III.A. (1-4)	III.G.2	2.2

Table 3.5

DESCRIPTION OF THE VERTICAL VELOCITY EQUATION

	Vertical Velocity	Mass Convergence at Upper Level	Mass Convergence at Lower Level
Eq. (2.34):	•w	$+\frac{1}{2}\left(\frac{\partial}{\partial x} u_3^* + \frac{\partial}{\partial y} v_3^*\right)$	$-\frac{1}{2}\left(\frac{3}{3x}u_1^*+\frac{3}{3y}v_1^*\right)$
Program Reference	COMP 1 (4530)	COMP 1 (4130-4540)	.30-4540)
Text Reference	III.C.2	III.	111.6.2

Table 3.6

DESCRIPTION OF THE MOISTURE-BALANCE EQUATION

	Moisture Tendency	Horizontal Advection of Moisture	Moisture-Source Term
Eq. (2.35):	<u>9</u> (пq₃) =	$-\frac{3}{3x}\left[q_{3}\left(\frac{5}{4}u_{3}^{*}-\frac{1}{4}u_{1}^{*}\right)\right]-\frac{3}{3y}\left[q_{3}\left(\frac{5}{4}v_{3}^{*}-\frac{1}{4}v_{1}^{*}\right)\right]$	+ 2mg(E - C)
Program	STEP (1850-2280)	COMP 1 (3250-3730)	COMP 3 (11280-11480)
lext Reference	III.A. (1-4)	111.6.9	III.C.11

The expression S_{ψ} represents the friction terms in the momentum equations, the diabatic heating term in the energy equation, or the moisture source term in the moisture equation. These terms will be referred to collectively as the "source terms." All the other terms are included in the expression D_{ψ} . Both D_{ψ} and S_{ψ} are complicated finite-difference expressions involving the independent variables and the dependent variables at ij and neighboring points.

In the time-extrapolation method used in this model, the source terms are evaluated every fifth time step. The remaining terms (D $_{\!{}_{\!{}^{11}}}\!)$ are evaluated each time step by means of a sequence of uncentered and centered horizontal differences. Thus, the time extrapolation proceeds in a repeated sequence of five individual time steps of At each. The first four time steps consist of two substages each, and the fifth time step consists of three substages. The first substage, which is identical in all five time steps, provides a preliminary estimate of the dependent variables for time τ + n by evaluating $D_{_{\eta_1}}$ using values of the dependent variables at time $\tau + (n - 1)$. The second substage obtains a final estimate of the dependent variables using the preliminary estimates to evaluate D, with the horizontal-difference scheme appropriate to the position in the five-step sequence. The special third substage in the fifth time step consists of evaluating the source terms using values of the dependent variables obtained from the second substage. An outline of this procedure is shown in Fig. 3.1, and each substage of the time step is described below.

2. Preliminary Estimate of the Dependent Variables (All Time Steps)

The preliminary estimate (identified in the FORTRAN code by the flag MRCH=1) is obtained using a forward time step and evaluating D_{ψ} by a centered horizontal difference. However, the horizontal and vertical advection terms and the Coriolis force term of D_{ψ} are advanced only a half time step, while the remaining terms are advanced a full time step (Δt). Thus, from Eq. (3.1) for the momentum, energy, and moisture equations we have, upon omitting the source terms,

Fig. 3.1 -- Sequence of time steps and substages in the time-integration procedure.

$$(\widehat{\Pi\psi})_{\mathbf{i}\mathbf{j}}^{\tau+1} = (\Pi\psi)_{\mathbf{i}\mathbf{j}}^{\tau} + \frac{\Delta t}{2} A_{\psi}(\pi^{\tau}, \mathbf{u}^{\tau}, \ldots)_{\mathbf{i}\mathbf{j}}$$
$$+ \Delta t R_{\psi}(\pi^{\tau}, \mathbf{u}^{\tau}, \ldots)_{\mathbf{i}\mathbf{j}}$$
(3.3)

where A_{ψ} represents the advection terms in D_{ψ} , $R_{\psi} = D_{\psi} - A_{\psi}$ represents the remaining terms of D_{ψ} , the superscript τ refers to values at time τ , and the caret is used to indicate the preliminary estimate of a quantity. Similarly, the pressure-tendency equation (3.2) becomes

$$(\hat{\Pi})_{ij}^{\uparrow\uparrow} = (\Pi)_{ij}^{\uparrow} + \Delta t D_{\pi} (\pi^{\uparrow}, \mathbf{u}^{\uparrow}, \dots)_{ij}$$
(3.4)

The first estimate of the dependent variables ψ is therefore given by Eqs. (3.3) and (3.4) as

$$\hat{\psi}_{\mathbf{i}\mathbf{j}}^{\tau+1} = \frac{(\hat{\Pi}\hat{\psi})_{\mathbf{i}\mathbf{j}}^{\tau+1}}{\hat{\Pi}_{\mathbf{i}\mathbf{j}}^{\tau+1}}$$
(3.5)

which serves to remove the II weighting of the variables. As noted previously, this procedure is used as a preliminary estimate in each time step of the numerical integration.

3. Final Estimate of the Dependent Variables (Time Steps 1 to 4)

Using the preliminary estimates given above, the final estimates of the dependent variables at the nth time step of the sequence n=1, 2, 3, 4 become

$$(\Pi \psi)_{ij}^{\tau+n} = (\Pi \psi)_{ij}^{\tau+(n-1)} + \Delta t D_{\psi}(\hat{\pi}, \hat{u}, \dots)_{ij}$$
 (3.6)

$$\pi_{ij}^{\tau+n} = \pi_{ij}^{\tau+(n-1)} + \Delta t D_{\psi}(\hat{\pi}, \hat{u}, \ldots)_{ij}$$
(3.7)

from which we calculate

$$\psi_{\mathbf{i}\mathbf{j}}^{\tau+n} = \frac{(\pi\psi)_{\mathbf{i}\mathbf{j}}^{\tau+n}}{\pi^{\tau+n}_{\mathbf{i}\mathbf{j}}}$$
(3.8)

When n=1 an up-right uncentered horizontal space difference is used (identified by the flag MRCH=3); when n=2, a down-left uncentered horizontal space difference is used (identified by the flag MRCH=4), and when n=3 or 4, a centered horizontal space difference is used (identified by the flag MRCH=2). The case for n=5 is considered below.

4. Final Estimate of the Dependent Variables (Time Step 5)

The first two substages of the fifth time step (n = 5) are performed as described above by Eqs. (3.6) to (3.8). If we represent the variables at the end of the second substage of the fifth time step by a tilde, $(\tilde{\ })$, the final estimates become

$$(\psi)_{ij}^{\tau+5} = (\widetilde{\psi})_{ij}^{\tau+5} + 5\Delta t \frac{S_{\psi}(\widetilde{\pi}^{\tau+5}, u^{\tau+5}, ...)_{ij}}{\widetilde{\pi}_{ij}^{\tau+5}}$$
 (3.9)

The final estimate at every fifth time step thus incroduces the source terms (as evaluated in subroutines COMP 3 and COMP 4), and weights them for the full $5\Delta t$ time interval. Because the continuity (or pressuretendency) equation (3.2) is source free, the value of $\pi^{\tau+5}$ is given directly by the final estimate [Eq. (3.7)] for n=2.

Upon the completion of this time step, the sequence of five steps begins again. The flow of this time-integration procedure is controlled by subroutine STEP (steps 1850 to 2280). The horizontal finite-difference expressions used in the determination of the terms S_{ψ} , D_{ψ} , and R_{ψ} are given below.

B. HORIZONTAL FINITE DIFFERENCES

1. The Horizontal Finite-Difference Grid

The earth's surface is represented in the numerical calculations by a rectangular grid of points extending from pole to pole, an arbitrary point of which is designated it and identified by (J.I) in the code. The 180th meridian is represented by the set of points (1,j), the longitude 175W by the points (2,j), etc., the South Pole by (1,1), and the North Pole by (i, J); the equator is not a member of this grid, but corresponds to the value j = 231/2. This set of primary grid points can be regarded as the centers of one network of rectangular cells outlined by dashed lines in Fig. (3.2). The velocity variables u and y are carried at the corners of the cells (designated by + in the figure), the west/east mass flux u at the midpoints of the vertical sides (designated >), and the south/north mass flux v at the midpoint of the horizontal sides (designated A). All other quantities are carried at the midpoint of the cells (designated o). The values of u and v at the lower right-hand corner of the cell (i,j) are denoted by u_{ij} and v_{ij} , the value of u^* on the right-hand side of the cell by u_{ij}^* , and the value of v on the lower side of the cell by v₁₁. In the remainder of the text, the points o, +, >, and A will be referred to as "π points," "u,v points," "u points," and "v points," respectively. It may be noted that the poles are " π points," while the points at the equator are "u,v points."

The grid-point separation factors m and n represent the geographical distance between grid points, and are defined by Eqs. (2.18) and (2.19). The factors m,n and the area (mn) of the cells surrounding the m points are computed in subroutine MAGFAC (steps 14360 to 14850), where the following quantities are defined:

For purposes of computational efficiency, the notation (J,I), listing the y-index J first, is used in the FORTRAN code in lieu of the more conventional (I,J) notation. When reproducing specific FORTRAN statements this (J,I) notation, where $J=1, 2, \ldots, JM$ and $I=1, 2, \ldots, IM$, will be used. Elsewhere, the notation (i,j), where $i=1, 2, \ldots, I$ and $j=1, 2, \ldots, J$, will be used.

Fig. 3.2 -- The horizontal finite-difference grid with zonal index i and meridional index j. Here the open circles (o) represent grid points of the primary or π grid at which π , T, q, and φ are carried, while the plus (+) signs represent points at which u and v are carried (the u,v grid). The carets (\wedge and >) denote points of supplementary grids at which the northward and eastward mass fluxes v* and u* are determined.

$$LAT(j) = \varphi_{j} = \Delta\varphi(j - \frac{J+1}{2}) \qquad 1 \le j \le J \qquad (3.10)$$

$$DXP(j) = a\Delta\lambda \cos \varphi_{j} \qquad 1 \le j \le J \qquad (3.11)$$

$$DXU(j) = a\Delta\lambda \frac{1}{2} (\cos \varphi_j + \cos \varphi_{j-1})$$

$$= \frac{1}{2} [DXP(J) + DXP(J-1)] \qquad 1 \le j \le J$$
(3.12)

$$DYU(j) = a(\phi_j - \phi_{j-1})$$
 $j \ge 2$ (3.13)
 $DYU(1) = DYU(2)$

$$DYP(j) = a \frac{1}{2} (\varphi_{j+1} - \varphi_{j-1})$$

$$= \frac{1}{2} [DYU(j+1) + DYU(j)] \qquad 2 \le j \le J$$

$$DYP(1) = DYU(2)$$

$$DYP(J) = DYU(J)$$
(3.14)

$$DXYP(j) = DYP(j) \frac{[DXU(j+1) - JUJ(j)]}{2} \qquad 2 \le j \le J \qquad (3.15)$$

$$DXYP(1) = \frac{1}{2} DXU(2) \frac{DYP(1)}{2}$$

$$DXYP(J) = \frac{1}{2} DXU(J) \frac{DYP(J)}{2}$$

These quantities are illustrated in Figs. 3.3 to 3.5. From Fig. 3.2 we see that π and u are carried at the same latitudes, whereas u, v, v are carried at intermediate latitudes. Thus, the factors m, n centered at π or u points are given by DXP and DYP, whereas those centered at u, v, or v points are given by DXU and DYU. In this scheme the pressure (π) is thus given at the poles but not at the equator, whereas the velocity (u,v) is given at the equator but not at the poles.

Fig. 3.3 -- The map metric n, the meridional distance between grid points. At latitude ϕ_j , n = DYP is the north/south distance between points of the u,v grid (and between points of the v* grid), while n = DYU gives the corresponding distance between points of the π grid (and between points of the u* grid).

Fig. 3.4 -- The map metric m, the zonal distance between grid points. At latitude ϕ_j , m = DXP is the east/west distance between points of the π grid (and between points of the u* grid), while m = DXU gives the corresponding distance between points of the u,v grid (and between points of the v* grid).

Fig. 3.5 -- The area mn = DXYP surrounding a point of the π grid (a). At the north and south poles (j=J and j=1) this area is identified as the shaded regions shown in (b) and (c), respectively.

2. Finite-Difference Notation

The [J,I] indexing used in the FORTRAN code is identical for each of the four grid networks described above. That is, π_{JI} , u_{JI} and v_{JI} , u_{JI} , and v_{JI} , and v_{JI} , and v_{JI} all have the same index, (J,I), but each of these is carried and computed at different points in the horizontal finite-difference grid. It is convenien, therefore, to define π -, u,v-, u-, and v-centered notations to be used in formulating the finite-difference expressions. These notations are illustrated in Figs. 3.6 to 3.9. Here the index used for the finite-difference expressions is given below each point, and the [J,I] index used in the FORTRAN code is given above each point. These figures facilitate the transformation of the finite-difference expressions given below into the equivalent FORTRAN statements found in the program itself (see Chapter VII).

It is also convenient to introduce a notation for the grid-point separation factors (the horizontal distances between grid points on the surface of the earth). For each of the π -, u,v-, u -, and v -centered notations (see Figs. 3.6 to 3.9), m_{-1} , m_0 , and m_1 will denote the distance from -20 to 00, from -10 to 10, and from 00 to 02, respectively. Similarly, n_{-1} , n_0 , and n_1 will denote the distance from 0-2 to 00, from 0-1 to 01, and from 00 to 02, respectively. The numerical values of m_0 , m_0 , etc. are given in Eqs. (3.11) to (3.15). For example, when m_0 - or u -centered notation is used, m_0 and $m_{\pm 1}$ are given by DXP(j), m_0 by DYP(j), m_{-1} by DYU(j), and m_1 by DYU(j+1), whereas when u,v- or v -centered notation is used, m_0 and $m_{\pm 1}$ are given by DXU(j), m_0 by DYU(j), m_{-1} by DYP(j-1), and m_1 by DYP(j).

In the following subsections, variables at the two vertical levels will be indicated by the subscript ℓ , with $\ell=1$ denoting the (upper) level σ_1 and $\ell=3$ denoting the (lower) level σ_3 . In the FORTRAN code the index L is used to indicate the levels, with L = 1 denoting the level σ_1 and L = 2 denoting the level σ_3 .

3. Preparation for Time Extrapolation

At the beginning of each time step the dependent variables are transformed into a set of pressure-area-weighted variables. This trans-

Fig. 3.6 -- The schematic finite-difference grid in π-centered notation. The symbols above each point are the FORTRAN J,I index, and those below each point are the finite-difference subscript notation relative to the origin 00 or relative to the poles (p). The open circles (o) are points of the π grid, the plus signs (+) are points of the u,v grid, and the carets (Λ and >) are points of the v* and u* grids, respectively.

Fig. 3.7 -- The schematic finite-difference grid in u,v-centered notation. See Fig. 3.6 for symbol identification.

Fig. 3.8 -- The schematic finite-difference grid in u*-centered notation. See Fig. 3.6 for symbol identification.

Fig. 3.9 -- The schematic finite-difference grid in v*-centered notation. See Fig. 3.6 for symbol identification.

formation is performed at the beginning of subroutine COMP 1 (steps 2500 to 2680). For the quantities carried at π points (π , Π , T_3 , and q_3) the transformation is straightforward, and is given by

$$\Pi_{00} = (mn)_{00}^{\pi}_{00}$$
 (3.16)

$$(\Pi T)_{\ell,00} = (mn)_{00}^{\pi} 00^{T} \ell,00$$
 (3.17)

$$(\Pi q)_{3,00} = (mn)_{00}^{\pi} 00^{q}_{3,00}$$
(3.18)

where $(mn)_{00}$ is the π -centered area DXYP(J) (see Fig. 3.5).

For the transformation of the velocity components we similarly write (in u,v-centered notation)

$$(\Pi u)_{\ell,00} = \Pi_{00}^{u} u_{\ell,00}$$

$$(\Pi v)_{\ell,00} = \Pi_{00}^{u} v_{\ell,00}$$
(3.19)

where the u,v-centered area-weighted Π is defined in u,v-centered notation as

$$\Pi_{00}^{u} = \frac{1}{4} \left[(mn)_{-11}^{\pi} + (mn)_{11}^{\pi} + (mn)_{-1-1}^{\pi} - 1 + (mn)_{1-1}^{\pi} - 1 \right]$$
for 2 < j \le J - 1 (3.20)

with the polar expressions

$$\Pi_{0,p+1}^{u} = \frac{1}{4} \left[(mn)_{-1,p+2}^{\pi} - 1,p+2 + (mn)_{1,p+2}^{\pi} + (mn)_{1,p+2}^{\pi} + (mn)_{1,1}^{\pi} \right] + (mn)_{1,1}^{\pi}$$
(3.21)

$$\Pi_{0,p-1}^{u} = \frac{1}{4} \left[(mn)_{-1,p-2}^{\pi} - 1,p-2 + (mn)_{1,p-2}^{\pi} + (mn)_{1,p-2}^{\pi} \right] + (mn)_{1,p}^{\pi}$$
(3.22)

where p denotes the South or North Pole, and where

$$\overline{\pi}_{i,1} = \frac{1}{I} \sum_{i=1}^{I} \pi_{i,1}$$
 (3.23)

and

$$\overline{\pi}_{i,J} = \frac{1}{I} \sum_{i=1}^{I} \pi_{i,J}$$
 (3.24)

The quantities given by Eqs. (3.20) to (3.24) are illustrated in Fig. 3.10. Note that since the poles are mapped into I grid points, Eqs. (3.23) and (3.24) provide unique values of π for all I grid points of the South and North Poles. The other dependent variables carried at the poles $(T_1, T_3, \text{ and } q_3)$ and quantities computed at the poles, such as the mass convergence discussed in the next section, are similarly averaged. The polar adjustment of π , T_1 , T_3 , and q_3 is performed in subroutine COMP 2 (steps 6410 to 6560).

C. SOLUTION OF THE DIFFERENCE EQUATIONS

1. The Mass Flux

The west/east and south/north mass fluxes are defined by Eqs. (2.25) and (2.26). These quantities require three finite-difference approximations corresponding to the three space-difference schemes (the upright, down-left, and centered) used during the cycle of the time integration. Furthermore, u siven a longitudinal smoothing to avoid computational instability resulting from the decrease in the longitudinal spacing as the poles are approached. The mass-flux parameters are computed in subroutine COMP 1 (steps 2710 to 2950) and the longitudinal smoothing of u is performed in subroutine AVRX(K).

In the v-centered notation (see Fig. 3.9), the south/north mass flux v at the level ℓ becomes

Fig. 3.10 -- Illustration of the area-pressure weighting function $\Pi^{\mathbf{u}}$ centered at u,v points. At non-polar points, $\Pi^{\mathbf{u}}$ is the sum of the four shaded areas shown in (a), each weighted by its adjacent value of π ; at polar points, $\Pi^{\mathbf{u}}$ is given by the sum of the three shaded areas shown in (b) weighted by the indicated values of π .

$$v_{\ell,00}^{*} = \begin{cases} m_0 \frac{(v_{\ell,-10} + v_{\ell,10})}{2} \frac{(\pi_{01} + \pi_{0-1})}{2} \\ m_0 v_{\ell,10} \frac{(\pi_{01} + \pi_{0-1})}{2} \\ m_0 v_{\ell,-10} \frac{(\pi_{01} + \pi_{0-1})}{2} \end{cases}$$
 when
$$\begin{cases} MRCH = 1 \text{ or } 2 \\ MRCH = 3 \end{cases}$$
 (3.25)

The west/east mass flux u^* is computed in three stages. First, (nu) at the level ℓ is computed according to

where u -centered notation has been used (see Fig. 3.8). Second, the values of $(nu)_{\ell,00}$ are smoothed in subroutine AVRX(K) using a three-point zonal smoothing routine that may be represented by

$$(\overline{nu})_{\ell,00} = \lambda_0 (nu)_{\ell,-10} + (1 - 2\lambda_0) (nu)_{\ell,00} + \lambda_0 (nu)_{\ell,10}$$
 (3.27)

where λ_0 is the weighting factor of the smoothing routine. This smoothing procedure is described further in Section D below. After this calculation, the west/east mass flux u at the level ℓ is finally computed from

$$u_{\ell,00}^{*} = (\overline{nu})_{\ell,00}^{N_0} \frac{(\pi_{-10} + \pi_{10})}{2}$$
 (3.28)

where the superscript N_0 denotes the smoothed result after application of the subroutine AVRX(K) N_0 times (see Section D).

At this point it should be noted that u at the poles ($u_{1,1}$ and u_{1J}) has no meaning. However, to determine the advection of momentum in the polar caps, an equivalent u at the poles is defined. The routine used to compute this equivalent polar u is described in Subsection C.3 below.

2. Continuity Equation

The prognostic equation (2.33) for the pressure tendency and the diagnostic equation (2.34) for the vertical-velocity term may be rewritten in terms of the mass convergence at levels 1 and 3. Thus,

$$\frac{\partial \Pi}{\partial t} = -\frac{1}{2} \left(\frac{\partial u_1^*}{\partial x} + \frac{\partial v_1^*}{\partial y} \right) - \frac{1}{2} \left(\frac{\partial u_3^*}{\partial x} + \frac{\partial v_3^*}{\partial y} \right)$$
(3.29)

$$\dot{s} = -\frac{1}{2} \left(\frac{\partial u_1^*}{\partial x} + \frac{\partial v_1^*}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial u_3^*}{\partial x} + \frac{\partial v_3^*}{\partial y} \right)$$
(3.30)

In the π -centered notation (see Fig. 3.6), the mass convergence at all grid points, except the poles, is given by

$$\left(\frac{\partial u_{\ell}^{\star}}{\partial x} + \frac{\partial v_{\ell}^{\star}}{\partial y}\right)_{\ell,00} = \text{CONV}_{\ell,00}$$

$$= \left(u_{\ell,10}^{\star} - u_{\ell,-10}^{\star}\right) + \left(v_{\ell,01}^{\star} - v_{\ell,0-1}^{\star}\right)$$

$$2 \le j \le J - 1 \tag{3.31}$$

Only the south/north mass flux (v^*) contributes to the total mass convergence within the polar cap. The total mass convergence at the South and North Poles is therefore given by

$$CONV_{\ell,1} = \sum_{i=1}^{I} v_{\ell,i,p+1}^{*}$$
 (3.32)

$$CONV_{\ell,J} = -\sum_{i=1}^{I} v_{\ell,i,p-1}^{*}$$
 (3.33)

while the mass convergence attributed to each of the I sectors of the polar caps is given by

$$CONV_{\ell,i,1} = \frac{1}{I} \sum_{i=1}^{I} v_{\ell,p+1}^{*}$$
 (3.34)

$$CONV_{\ell,i,J} = \frac{1}{I} \sum_{i=1}^{I} v_{\ell,i,p-1}^{*}$$
 (3.35)

Thus, Eqs. (3.29) and (3.30) may be written in the computational forms

$$\left(\frac{\partial \Pi}{\partial t}\right)_{00} = -\frac{1}{2} \left(\text{CONV}_{1,00} + \text{CONV}_{3,00}\right)$$
 (3.36)

$$\dot{s}_{00} = \frac{1}{2} (conv_{3,00} - conv_{1,00})$$
 (3.37)

for an arbitrary point outside the polar cap,

$$\left(\frac{\partial \Pi}{\partial t}\right)_{1,1} = -\frac{1}{2} \left(\text{CONV}_{1,1,1} + \text{CONV}_{3,1,1}\right)$$
 (3.38)

$$\dot{S}_{1,1} = \frac{1}{2} (CONV_{3,1,1} - CONV_{1,1,1})$$
 (3.39)

at the South Pole, and

$$\left(\frac{\partial \Pi}{\partial t}\right)_{i,J} = -\frac{1}{2} \left(\text{CONV}_{1,i,J} + \text{CONV}_{3,i,J}\right)$$
 (3.40)

$$\dot{S}_{i,J} = \frac{1}{2} (CONV_{3,i,J} - CONV_{1,i,J})$$
 (3.41)

at the North Pole.

3. Horizontal Advection of Momentum

The horizontal advection of momentum at the u,v-grid point 1,j and at the level ℓ is approximated in the equations of motion (2.27) to (2.30) by

$$\left[\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{u}^*\mathbf{u}\right) + \frac{\partial}{\partial \mathbf{y}} \left(\mathbf{v}^*\mathbf{u}\right)\right]_{\ell, 1, 1} \approx \int_{\mathbf{r}} \mathbf{u} \vec{\mathbf{U}}^* \cdot \vec{\mathbf{N}} d\mathbf{r} \qquad (3.42)$$

and

$$\left[\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{u}^*\mathbf{v}\right) + \frac{\partial}{\partial \mathbf{y}} \left(\mathbf{v}^*\mathbf{v}\right)\right]_{\ell,1,1} \approx \int_{\Gamma} \mathbf{v} \dot{\vec{\mathbf{U}}}^* \cdot \vec{\mathbf{N}} d\Gamma \qquad (3.43)$$

where \overrightarrow{U} is a vector in the x,y plane with \overrightarrow{u} and \overrightarrow{v} as its x and y components, and \overrightarrow{N} is the outward unit vector normal to the contour Γ of the rectangular grid defined by the four π points surrounding the u-grid point i,j (see Fig. 3.11).

To evaluate the integrals in Eqs. (3.42) and (3.43) the contour Γ is divided into eight segments. Along each of the eight segments, $\vec{U}^* \cdot \vec{N}$ is defined (using u,v-centered notation) as

$$\begin{aligned} &\mathbf{U}_{10} = \frac{2}{3} \cdot \frac{1}{4} \left[\mathbf{u}_{01}^{\star} + \mathbf{u}_{21}^{\star} + \mathbf{u}_{2-1}^{\star} + \mathbf{u}_{0-1}^{\star} \right], & \text{along ab} \\ &\widetilde{\mathbf{U}}_{11} = \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{u}_{01}^{\star} + \mathbf{u}_{21}^{\star} \right] + \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{v}_{10}^{\star} + \mathbf{v}_{12}^{\star} \right], & \text{along bc} \\ &\mathbf{v}_{01} = \frac{2}{3} \cdot \frac{1}{4} \left[\mathbf{v}_{10}^{\star} + \mathbf{v}_{12}^{\star} + \mathbf{v}_{-12}^{\star} + \mathbf{v}_{-10}^{\star} \right], & \text{along cd} \\ &\widetilde{\mathbf{V}}_{-11} = \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{v}_{-10}^{\star} + \mathbf{v}_{-12}^{\star} \right] - \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{u}_{01}^{\star} + \mathbf{u}_{-21}^{\star} \right], & \text{along de} \\ &-\mathbf{U}_{-10} = -\frac{2}{3} \cdot \frac{1}{4} \left[\mathbf{u}_{01}^{\star} + \mathbf{u}_{-21}^{\star} + \mathbf{u}_{-2-1}^{\star} + \mathbf{u}_{0-1}^{\star} \right], & \text{along ef} \\ &-\widetilde{\mathbf{U}}_{-1-1} = -\frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{u}_{0-1}^{\star} + \mathbf{u}_{-2-1}^{\star} \right] - \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{v}_{-10}^{\star} + \mathbf{v}_{-1-2}^{\star} \right], & \text{along fg} \\ &-\mathbf{v}_{0-1} = -\frac{2}{3} \cdot \frac{1}{4} \left[\mathbf{v}_{10}^{\star} + \mathbf{v}_{1-2}^{\star} + \mathbf{v}_{-1-2}^{\star} + \mathbf{v}_{-10}^{\star} \right], & \text{along gh} \\ &-\widetilde{\mathbf{V}}_{1-1} = -\frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{v}_{10}^{\star} + \mathbf{v}_{1-2}^{\star} \right] + \frac{1}{6} \cdot \frac{1}{2} \left[\mathbf{u}_{0-1}^{\star} + \mathbf{u}_{-2-1}^{\star} \right], & \text{along ha} \end{aligned}$$

Fig. 3.11 -- Schematic representation of the fluxes U,V and \widetilde{U} , \widetilde{V} on the grid cell surrounding a point of the u,v grid (identified by 00 in u,v notation; see Fig. 3.7).

With these definitions, Eqs. (3.42) and (3.43) become

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{u}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{u}) \end{bmatrix}_{00} = \frac{1}{2} \left[\mathbf{U}_{10} (\mathbf{u}_{00} + \mathbf{u}_{20}) - \mathbf{U}_{-10} (\mathbf{u}_{-20} + \mathbf{u}_{00}) + \mathbf{V}_{01} (\mathbf{u}_{00} + \mathbf{u}_{02}) - \mathbf{V}_{0-1} (\mathbf{u}_{0-2} + \mathbf{u}_{00}) + \widetilde{\mathbf{U}}_{11} (\mathbf{u}_{00} + \mathbf{u}_{20}) - \widetilde{\mathbf{U}}_{-1-1} (\mathbf{u}_{-2-2} + \mathbf{u}_{00}) + \widetilde{\mathbf{V}}_{-11} (\mathbf{u}_{00} + \mathbf{u}_{-22}) - \widetilde{\mathbf{V}}_{1-1} (\mathbf{u}_{2-2} + \mathbf{u}_{00}) \right]$$
(3.45)

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{v}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{v}) \end{bmatrix}_{00} = \frac{1}{2} \left[\mathbf{U}_{10} (\mathbf{v}_{00} + \mathbf{v}_{20}) - \mathbf{U}_{-10} (\mathbf{v}_{-20} + \mathbf{v}_{00}) + \mathbf{V}_{01} (\mathbf{v}_{00} + \mathbf{v}_{02}) - \mathbf{V}_{0-1} (\mathbf{v}_{0-2} + \mathbf{v}_{00}) + \widetilde{\mathbf{U}}_{11} (\mathbf{v}_{00} + \mathbf{v}_{20}) - \widetilde{\mathbf{U}}_{-1-1} (\mathbf{v}_{-2-2} + \mathbf{v}_{00}) + \widetilde{\mathbf{V}}_{-11} (\mathbf{v}_{00} + \mathbf{v}_{-22}) - \widetilde{\mathbf{V}}_{1-1} (\mathbf{v}_{2-2} + \mathbf{v}_{00}) \right] \quad (3.46)$$

at all points outside the polar cap. In Eqs. (3.44) to (3.46) the subscript ℓ has been dropped, and it should be understood that these expressions for the horizontal advection are valid for $\ell=1$ and 3.

The momentum advection within the polar cap requires special treatment. In Fig. 3.11 it can be seen that when the unit square represents a north polar sector, the fluxes \tilde{V}_{-11} , V_{01} , and \tilde{U}_{11} represent advection across the pole. Physically, advection can occur across the pole only from a single sector to that sector separated by 180 deg of longitude. Thus, transpolar advection is not calculated and \tilde{V}_{-11} , V_{01} and \tilde{U}_{11} are not defined. However, the fluxes U_{-10} and U_{10} represent advection between adjacent sectors within the polar cap, but the definitions for these fluxes [Eq. (3.44)] break down since u^* is not defined at the poles. To circumvent this, a polar u^* is determined in subroutine COMP 1 (steps 2790 to 3230) so that the near-polar U are given by

$$U_{\pm 1,p-1} = \frac{1}{6} \left(u_{0,J}^{*} + u_{\pm 2,J}^{*} + u_{0,p-2}^{*} + u_{\pm 2,p-2}^{*} \right)$$
(3.47)

and the continuity equation

$$\frac{\partial}{\partial t} (\Pi_{0,p-1}^{u}) + U_{1,p-1} - U_{-1,p-1} - V_{0,p-2}$$

$$- \widetilde{U}_{-1,p-2} - \widetilde{V}_{1,p-2} - \dot{S}_{0,p-1}^{u} = 0$$
(3.48)

is satisfied for each of the north polar sectors. Here u,v-centered notation has been used, and the definition of $\overset{u}{s}_{0,p-1}$ is given in the next subsection.

It is shown by Langlois and Kwok (1969) that under the above conditions u^* at a polar grid point i,J is given by

$$u_{i,J}^* = 3\left(\psi_i - \frac{1}{I}\sum_{i=1}^{I}\psi_i\right)$$
 (3.49)

where ψ_i is given by

$$\psi_1 = 0, \ \psi_2 = v_{3/2}^{\star \prime}, \ \psi_3 = v_{3/2}^{\star \prime} + v_{5/2}^{\star \prime}, \ \dots, \ \psi_1 = \sum_{k=1}^{i-1} v_{k+1/2}^{\star \prime};$$

$$i = 2, 3, \dots, I$$
(3.50)

and

$$v_{i+1/2}^{*'} = v_{i+1/2,p-1}^{*} - \frac{1}{I} \sum_{i=0}^{I-1} v_{i+1/2,p-1}^{*}$$
 (3.51)

In Eqs. (3.50) and (3.51) the fractional values of the index i are used to denote the v-grid points to the right of the u,v-grid point (i,p-1). Similar expressions can be derived for the South Pole.

If we use Eqs. (3.49) to (3.51) to determine the values of $u_{0,J}^*$ and $u_{\pm 2,J}^*$ in Eq. (3.47), the polar horizontal advection of momentum in u,v- centered notation becomes

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{u}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{u}) \end{bmatrix}_{0,p+1} = \frac{1}{2} \left[\mathbf{v}_{1,p+1} (\mathbf{u}_{0,p+1} + \mathbf{u}_{2,p+1}) - \mathbf{v}_{-1,p+1} (\mathbf{u}_{-2,p+1} + \mathbf{u}_{0,p+1}) + \mathbf{v}_{0,p+2} (\mathbf{u}_{0,p+1} + \mathbf{u}_{0,p+3}) + \widetilde{\mathbf{v}}_{1,p+2} (\mathbf{u}_{0,p+1} + \mathbf{u}_{2,p+3}) + \widetilde{\mathbf{v}}_{-1,p+2} (\mathbf{u}_{0,p+1} + \mathbf{u}_{-2,p+3}) \right] (3.52)$$

and

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{v}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{v}) \end{bmatrix}_{0,p+1} = \frac{1}{2} \left[\mathbf{u}_{1,p+1} (\mathbf{v}_{0,p+1} + \mathbf{v}_{2,p+1}) - \mathbf{u}_{-1,p+1} (\mathbf{v}_{-2,p+1} + \mathbf{v}_{0,p+1}) + \mathbf{v}_{0,p+2} (\mathbf{v}_{0,p+1} + \mathbf{v}_{0,p+3}) + \widetilde{\mathbf{u}}_{1,p+2} (\mathbf{v}_{0,p+1} + \mathbf{v}_{2,p+3}) + \widetilde{\mathbf{v}}_{-1,p+2} (\mathbf{v}_{0,p+1} + \mathbf{v}_{-2,p+3}) \right] (3.53)$$

at the South Pole, and

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{u}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{u}) \end{bmatrix}_{0,p-1} = \frac{1}{2} \begin{bmatrix} \mathbf{u}_{1,p-1} (\mathbf{u}_{0,p-1} + \mathbf{u}_{2,p-1}) \\ -\mathbf{u}_{-1,p-1} (\mathbf{u}_{-2,p-1} + \mathbf{u}_{0,p-1}) - \mathbf{v}_{0,p-2} (\mathbf{u}_{0,p-3} + \mathbf{u}_{0,p-1}) \\ -\tilde{\mathbf{u}}_{-1,p-2} (\mathbf{u}_{-2,p-3} + \mathbf{u}_{0,p-1}) - \tilde{\mathbf{v}}_{1,p-2} (\mathbf{u}_{2,p-3} + \mathbf{u}_{0,p-1}) \end{bmatrix} (3.54)$$

and

$$\begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & (\mathbf{u}^* \mathbf{v}) + \frac{\partial}{\partial \mathbf{y}} & (\mathbf{v}^* \mathbf{v}) \end{bmatrix}_{0,p-1} = \frac{1}{2} \begin{bmatrix} \mathbf{u}_{1,p-1} (\mathbf{v}_{0,p-1} + \mathbf{v}_{2,p-1}) \\ - \mathbf{u}_{-1,p-1} (\mathbf{v}_{-2,p-1} + \mathbf{v}_{0,p-1}) - \mathbf{v}_{0,p-2} (\mathbf{v}_{0,p-3} + \mathbf{v}_{0,p-1}) \\ - \widetilde{\mathbf{u}}_{-1,p-2} (\mathbf{v}_{-2,p-3} + \mathbf{v}_{0,p-1}) - \widetilde{\mathbf{v}}_{1,p-2} (\mathbf{v}_{2,p-3} + \mathbf{v}_{0,p-1}) \end{bmatrix} (3.55)$$

at the North Pole.

4. Vertical Advection of Momentum

In Subsection C.2 the vertical velocity parameter \mathring{S} is defined at π -grid points [Eqs. (3.37), (3.39), and (3.41)]. However, for use in the momentum equations, a \mathring{S}^{u} , analogous to Π^{u} [Eqs. (3.20) to (3.24)] must be defined at u,v-grid points. Thus, at u,v points outside the polar cap the vertical advection term in u,v-centered notation is given by

$$\frac{(u_{1,00} + u_{3,00})}{2} \dot{s}_{00}^{u} = u_{2,00} \frac{1}{4} (\dot{s}_{-11} + \dot{s}_{11} + \dot{s}_{1-1} + \dot{s}_{-1-1})$$
 (3.56)

and at the poles by

$$\frac{(u_{1,0,p+1} + u_{3,0,p+1})}{2} \dot{s}_{0,p+1}^{u} = u_{2,0,p+1} \left[\frac{1}{4} (\dot{s}_{-1,p+2} + \dot{s}_{1,p+2}) + \dot{s}_{1,1} \right] (3.57)$$

and

$$\frac{(u_{1,0,p-1} + u_{3,0,p-1})}{2} \dot{s}_{0,p-1}^{u} = u_{2,0,p-1} \left[\frac{1}{4} (\dot{s}_{-1,p-2} + \dot{s}_{1,p-2}) + \dot{s}_{1,J} \right] (3.58)$$

where

$$\bar{\dot{s}}_{i,1} = \frac{1}{I} \sum_{i=1}^{I} \dot{s}_{i,1}$$
 (3.59)

and

$$\dot{\dot{s}}_{i,J} = \frac{1}{I} \sum_{i=1}^{I} \dot{\dot{s}}_{i,J}$$
 (3.60)

5. Coriolis Force

To evaluate the Coriolis force term in the momentum equations, the parameter F [Eq. (2.24)] and the Coriolis parameter f " 2Ω sin ϕ are the first obtained at the π -grid points. The Coriolis parameter is computed in subroutine MAGFAC (steps 14710 to 14750). In terms of π -centered notation it is defined as

$$f_{00} = \Omega \frac{a}{2(mn)_{00}} \left[(\cos \varphi_{-2} + \cos \varphi_{0})_{m_{-1}} - (\cos \varphi_{0} + \cos \varphi_{0})_{m_{1}} \right]$$
(3.61)

Equation (3.61) can be reduced to

$$f_{00} = -2\Omega \frac{\cos \varphi_2 - \cos \varphi_{-2}}{\varphi_2 - \varphi_{-2}}$$

which is a finite-difference analog of

$$f = 2\Omega \sin \varphi = -2\Omega \frac{\partial (\cos \varphi)}{\partial \varphi}$$

At the poles f is given by

$$f_{J} = \Omega \frac{a}{(mn)_{J}} \left[(\cos \varphi_{J} + \cos \varphi_{J-1})^{m}_{J} \right]$$
 (3.62)

and

$$f_1 = -f_J \tag{3.63}$$

With the Coriolis parameter defined by Eqs. (3.61) to (3.63), the finite-difference form of Eq. (2.24) in π -centered notation becomes

$$F_{00} = (mn)_{00}f_{00} - \frac{1}{4}(u_{-11} + u_{11} + u_{1-1} + u_{-1-1})(m_1 - m_{-1})$$
 (3.64)

Finally, the Coriolis term at a u,v-grid point is represented in terms of F at the four surrounding π points by

$$(u\pi F)_{\ell,00} = \frac{1}{2} \left[\frac{(\pi_{11} + \pi_{1-1})}{2} \frac{(F_{11} + F_{1-1})}{2} + \frac{(\pi_{-11} + \pi_{-1-1})}{2} \frac{(F_{-11} + F_{-1-1})}{2} \right] u_{\ell,00}$$
 (3.65)

$$(v\pi F)_{\ell,00} = \frac{1}{2} \left[\frac{(\pi_{11} + \pi_{1-1})}{2} \frac{(F_{11} + F_{1-1})}{2} + \frac{(\pi_{-11} + \pi_{-1-1})}{2} \frac{(F_{-11} + F_{-1-1})}{2} \right] v_{\ell,00}$$
(3.66)

where u,v-centered notation has been used.

6. Pressure-Gradient Force

The pressure-gradient force terms require a treatment analogous to that for the mass flux discussed in Subsection C.1. That is, they require three finite-difference approximations corresponding to the three space-difference schemes used during the cycle of the time integration, and the pressure-gradient terms of the u-momentum equation are smoothed using subroutine AVRX(K), as discussed in Subsection C.1.

In u,v-centered notation, the pressure-gradient force in the u-momentum equation [Eqs. (2.27) and (2.29)] is given by

$$n_{0} \left(\pi \frac{3\phi_{\ell}}{3\pi} + \sigma_{\ell} \pi \alpha_{\ell} \frac{3\pi}{3\pi} \right)_{\ell,00}$$

$$= \frac{n_{0}}{4} \frac{1}{((\pi_{-11} + \pi_{11})(\phi_{\ell,11} - \phi_{\ell,-11}) + [(\sigma_{\ell} \pi \alpha_{\ell})_{-11} + (\sigma_{\ell} \pi \alpha_{\ell})_{11}](\pi_{11} - \pi_{-11})}^{N_{0}}$$

$$+ \frac{n_{0}}{4} \frac{1}{((\pi_{-1-1} + \pi_{1-1})(\phi_{\ell,1-1} - \phi_{\ell,-1-1}) + [(\sigma_{\ell} \pi \alpha_{\ell})_{-1-1} + (\sigma_{\ell} \pi \alpha_{\ell})_{1-1}](\pi_{1-1} - \pi_{-1-1})}^{N_{0}}$$

$$\text{when MRCH = 1 or 2}$$

$$= \frac{n_{0}}{2} \frac{1}{((\pi_{-11} + \pi_{11})(\phi_{\ell,11} - \phi_{\ell,-11}) + [(\sigma_{\ell} \pi \alpha_{\ell})_{-11} + (\sigma_{\ell} \pi \alpha_{\ell})_{11}](\pi_{11} - \pi_{-11})}^{N_{0}}}$$

$$\text{when MRCH = 3}$$

$$= \frac{n_{0}}{2} \frac{1}{((\pi_{-1-1} + \pi_{1-1})(\phi_{\ell,1-1} - \phi_{\ell,-1-1}) + [(\sigma_{\ell} \pi \alpha_{\ell})_{-1-1} + (\sigma_{\ell} \pi \alpha_{\ell})_{1-1}](\pi_{1-1} - \pi_{-1-1})}^{N_{0}}}$$

$$\text{when MRCH = 4}$$

where $\binom{---}{0}^{N_0}$ indicates the smoothing procedure in subroutine AVRX(K) and ϕ_{ℓ} is the geopotential at the levels $\ell=1$ and 3 defined by Eqs. (2.16) and (2.17). The geopotential is evaluated at π points in subroutine COMP 2 (steps 5260 to 5430).

(3.67)

For the v-momentum equations [Eqs. (2.28) and (2.30)] the pressuregradient force is given by

$$m_{O} \left(\pi \frac{\partial \phi_{\ell}}{\partial y} + \sigma_{\ell} \pi \alpha_{\ell} \frac{\partial \pi}{\partial y} \right)_{\ell \cdot OO}$$

$$= m_0 \left\{ \frac{1}{2} \left[\frac{\pi_{-11} + \pi_{-1-1}}{2} \left(\phi_{\ell,-11} - \phi_{\ell,-1-1} \right) + \frac{\pi_{11} + \pi_{1-1}}{2} \left(\phi_{\ell,11} - \phi_{\ell,1-1} \right) \right] \right. \\ + \frac{1}{2} \left[\frac{\left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{-11} + \left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{-1-1}}{2} \left(\pi_{-11} - \pi_{-1-1} \right) \right. \\ + \left. \frac{\left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{11} + \left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{1-1}}{2} \left(\pi_{11} - \pi_{1-1} \right) \right] \right\}$$

when MRCH = 1 or 2

$$= m_0 \left[\frac{\pi_{11} + \pi_{1-1}}{2} \left(\phi_{\ell,11} - \phi_{\ell,1-1} \right) + \frac{\left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{11} + \left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{1-1}}{2} \left(\pi_{11} - \pi_{1-1} \right) \right]$$
when MRCH = 3

$$= m_0 \left[\frac{\pi_{-11} + \pi_{-1-1}}{2} \left(\phi_{\ell,-11} - \phi_{\ell,-1-1} \right) + \frac{\left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{-11} + \left(\sigma_{\ell} \pi \alpha_{\ell} \right)_{-1-1}}{2} \left(\pi_{-11} - \pi_{-1-1} \right) \right]$$
when MRCH = 4

7. Horizontal Advection of Temperature

The horizontal advection of temperature at the level ℓ and for an arbitrary π point at the latitudes from ϕ_3 to ϕ_{J-2} is given in $\pi\text{-centered}$ notation as

$$\left[\frac{\partial}{\partial x} (u^{*}T) + \frac{\partial}{\partial y} (v^{*}T)\right]_{\ell,00} = (u^{*}T)_{\ell,10} - (u^{*}T)_{\ell,-10} + (v^{*}T)_{\ell,01} - (v^{*}T)_{\ell,0-1}$$
(3.69)

where

$$(u^*T)_{\ell,\pm 10} = u^*_{\ell,\pm 10} \frac{1}{2} (T_{\ell,00} + T_{\ell,\pm 20})$$
 (3.70)

and

$$(v^*T)_{\ell,0\pm 1} = v^*_{\ell,0\pm 1} \frac{1}{2} (T_{\ell,00} + T_{\ell,0\pm 2})$$
 (3.71)

At the poles only the south/north mass flux contributes to the advection of temperature. Thus, for the South Pole, Eq. (3.69) reduces to

$$\left[\frac{\partial}{\partial x} \left(u^*T\right) + \frac{\partial}{\partial y} \left(v^*T\right)\right]_{\ell,0,1} = \left(v^*T\right)_{\ell,0,p+1} \tag{3.72}$$

where

while at the North Pole it reduces to

$$\left[\frac{\partial}{\partial x} \left(u^*T\right) + \frac{\partial}{\partial y} \left(v^*T\right)\right]_{\ell,0,J} = \left(v^*T\right)_{\ell,0,p-1} \tag{3.74}$$

where

$$(\mathbf{v}^{\star}\mathbf{T})_{\ell,0,p-1} = \mathbf{v}^{\star}_{\ell,0,p-1} \begin{cases} \mathbf{T}_{\ell,0,J} \\ \mathbf{T}_{\ell,0,p-2} \end{cases} \text{ if } \mathbf{v}^{\star}_{\ell,0,p-1} \begin{cases} \leq 0 \\ \geq 0 \end{cases}$$
 (3.75)

At the latitudes ϕ_2 and ϕ_{J-1} [the points (1, p±2) in π -centered notation] the west/east advection term ($\frac{\partial}{\partial x}$ u T) is given a special treatment. The form of the total advection term, analogous to Eq. (3.69), is given at these latitudes by

$$\left[\frac{\partial}{\partial x} \left(u^{*}T\right) + \frac{\partial}{\partial y} \left(v^{*}T\right)\right]_{\ell,0,p\pm 2} = \left(u^{*}T\right)_{\ell,1,p\pm 2} - \left(u^{*}T\right)_{\ell,-1,p\pm 2} \\
\pm \left(v^{*}T\right)_{\ell,0,p\pm 3} \mp \left(v^{*}T\right)_{\ell,0,p\pm 1} \quad (3.76)$$

with $(v^{\dagger}T)_{\ell,0,p\pm 1}$ given by Eqs. (3.73) and (3.75), and with

$$(v^*T)_{\ell,0,p\pm 3} = v^*_{\ell,0,p\pm 3} \frac{1}{2} (T_{\ell,0,p\pm 2} + T_{\ell,0,p\pm 4})$$
 (3.77)

8. Energy-Conversion Terms

The first two energy-conversion terms in the thermodynamic energy equations (see Table 3.3) do not require horizontal finite-difference expressions. They are evaluated at # points in subroutine COMP 1 (steps 4560 to 4660) from the equations

$$\left[\left(\frac{p_{\ell}}{p_{0}} \right)^{\kappa} \frac{\theta_{1} + \theta_{3}}{2} \dot{s} \right]_{\ell,00} - p_{\ell,00}^{\kappa} \frac{1}{2} \left(\frac{T_{1,00}}{p_{1,00}^{\kappa}} + \frac{T_{3,00}}{p_{3,00}^{\kappa}} \right) \dot{s}_{00}$$
 (3.80)

$$\left(\frac{\sigma_{\alpha\pi}}{c_{p}}\frac{\partial\Pi}{\partial t}\right)_{\ell,00} = \sigma_{\ell}^{\pi}_{00}\frac{\kappa^{T}_{\ell,00}}{p_{\ell,00}}\left(\frac{\partial\Pi}{\partial t}\right)_{00}$$
(3.81)

where S and $\partial \Pi/\partial t$ are evaluated at π points using Eqs. (3.36) to (3.41), and the pressure at level ℓ is given by

$$\mathbf{p}_{\ell} = \mathbf{p}_{\mathbf{T}} + \sigma_{\ell} \pi \tag{3.82}$$

In Eq. (3.80) the definition

$$\theta_{\ell} = T_{\ell} \left(\frac{P_0}{P_{\ell}} \right)^{\kappa}$$

has been used to eliminate the potential temperature, and in Eq. (3.81) the equation of state in the form

$$\alpha_{\ell} = c_{p^{\kappa}} \frac{T_{\ell}}{p_{\ell}}$$

has been used to eliminate the specific volume.

The remaining energy-conversion terms at the level £ are evaluated from the expression

$$\left[\frac{\sigma_{\alpha}}{c_{p}}\left(u^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{x}}+v^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{y}}\right)\right]_{\mathcal{L},00} = \frac{1}{c_{p}}\frac{1}{2}\left[\left(\sigma_{\alpha}u^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{x}}\right)_{\mathcal{L},-10} + \left(\sigma_{\alpha}u^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{y}}\right)_{\mathcal{L},01} + \left(\sigma_{\alpha}u^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{y}}\right)_{\mathcal{L},01} + \left(\sigma_{\alpha}u^{\frac{1}{2}}\frac{\partial\pi}{\partial\mathbf{y}}\right)_{\mathcal{L},01}\right] (3.83)$$

where m-centered notation has been used, and where

$$\left(\sigma \alpha u^{*} \frac{\partial}{\partial x}\right)_{\ell,\pm 10} = (\pm \pi_{\pm 20} \mp \pi_{00}) [(\sigma \alpha \pi)_{\ell,\pm 20} + (\sigma \alpha \pi)_{\ell,00}]/2$$

$$\left(\frac{n_{1}u_{\ell,\pm 11} + n_{-1}u_{\ell,\pm 1-1}}{2} \text{ if MRCH = 1 or 2}\right)$$

$$\times \left(\frac{n_{1}u_{\ell,\pm 11} + n_{-1}u_{\ell,\pm 1-1}}{2} \text{ if MRCH = 3}\right)$$

$$(3.84)$$

$$\overline{(n_{1}u_{\ell,\pm 11})}^{N_{0}}$$

$$\text{ if MRCH = 4}$$

$$\left(\sigma_{\alpha}\mathbf{v}^{\star}\frac{\partial\pi}{\partial\mathbf{y}}\right)_{\ell,0\pm1}=(\pm\pi_{0\pm2}\mp\pi_{00})[(\sigma_{\alpha\rho})_{\ell,0\pm2}+(\sigma_{\alpha\pi})_{\ell,00}]/2$$

$$\times \begin{cases} \frac{m_{\pm 1}v_{\ell,1\pm 1} + m_{\pm 1}v_{\ell,-1\pm 1}}{2} & \text{if MRCH = 1 or 2} \\ m_{\pm 1}v_{\ell,1\pm 1} & \text{if MRCH = 3} \\ m_{-1}v_{\ell,-1\pm 1} & \text{if MRCH = 4} \end{cases}$$
 (3.85)

In Eq. (3.84), $\frac{N_0}{N_0}$ denotes the zonal smoothing routine in subroutine AVRX(K) (see Chapter III, Subsection C.1).

9. Horizontal Advection of Moisture

As discussed in Chapter II, moisture is carried only at the level $\ell=3$. Furthermore, the moisture is considered to be advected by the average wind in the layer between $\ell=3$ and the surface. By linear extrapolation to the surface of the winds at levels $\ell=1$ and $\ell=3$, the average pressure-area-weighted wind in this layer is given by the equations

$$\frac{\mathbf{u}_{3}^{*} + \mathbf{u}_{4}^{*}}{2} = \frac{5}{4} \mathbf{u}_{3}^{*} - \frac{1}{4} \mathbf{u}_{1}^{*}$$

$$\frac{\mathbf{v}_{3}^{*} + \mathbf{v}_{4}^{*}}{2} = \frac{5}{4} \mathbf{v}_{3}^{*} - \frac{1}{4} \mathbf{v}_{1}^{*}$$
(3.86)

Using Eqs. (3.86) for the advecting wind, the expressions for the west/east and south/north moisture advection at π points outside the poles are given in π -centered notation by

$$\left\{ \frac{\partial}{\partial \mathbf{x}} \left[\mathbf{q}_{3} \left(\frac{5}{4} \mathbf{u}_{3}^{\star} - \frac{1}{4} \mathbf{u}_{1}^{\star} \right) \right] \right\}_{3,00} = \frac{5}{4} \left[\left(\mathbf{q}_{3} \mathbf{u}_{3}^{\star} \right)_{3,10} - \left(\mathbf{q}_{3} \mathbf{u}_{3}^{\star} \right)_{3,-10} \right] \\
- \frac{1}{4} \left[\left(\mathbf{q}_{3} \mathbf{u}_{1}^{\star} \right)_{3,10} - \left(\mathbf{q}_{3} \mathbf{u}_{1}^{\star} \right)_{3,-10} \right] \quad (3.87)$$

and

$$\left\{ \frac{\partial}{\partial y} \left[q_{3} \left(\frac{5}{4} v_{3}^{*} - \frac{1}{4} v_{1}^{*} \right) \right] \right\}_{3,00} = \frac{5}{4} \left[\left(q_{3} v_{3}^{*} \right)_{3,01} - \left(q_{3} v_{3}^{*} \right)_{3,0-1} \right] - \frac{1}{4} \left[\left(q_{3} v_{1}^{*} \right)_{3,01} - \left(q_{3} v_{1}^{*} \right)_{3,0-1} \right] \quad (3.88)$$

Physically the moisture parameter q is a non-negative quantity. Therefore, the fluxes $\left(q_3u_3^*\right)_{3,01}$, etc. on the right-hand sides of Eqs. (3.87) and (3.88) must be defined in such a way that when a grid cell becomes "dry," advection to neighboring cells will be prevented. With this restriction, the moisture fluxes in π -centered notation are given by

$$\begin{cases} (q_{3}u_{3}^{*})_{3,-10} \\ (q_{3}u_{1}^{*})_{3,-10} \\ (q_{3}u_{1}^{*})_{3,-10} \end{cases} = \begin{bmatrix} u_{3,00}^{*}q_{3,-20} \\ u_{1,-10}^{*} \end{bmatrix} \times \begin{cases} 0 & \text{if } (q_{3,00} + q_{3,0-2}) < 10^{-10} \\ 2 & \frac{q_{3,00}q_{3,-20}}{q_{3,00} + q_{3,-20}} & \text{if } \begin{cases} q_{3,-20} < q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} > 0 \\ u_{1,-10}^{*} < 0 \right\} \\ q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases} q_{3,-20} > q_{3,00} & \text{and } \left\{ u_{3,-10}^{*} < 0 \\ u_{1,-10}^{*} > 0 \right\} \end{cases}$$

$$\begin{cases}
 \left\{ \begin{pmatrix} q_{3,00} + q_{3,0-2} \end{pmatrix} \times \begin{pmatrix} q_{3,00} + q_{3,00} \end{pmatrix} \times \begin{pmatrix} q_{3,00} + q_{3,0-2} \end{pmatrix} \times \begin{pmatrix} q_{3$$

In the polar caps only the south/north advection terms given by Eq. (3.88) contribute to the advection of moisture. In π -centered polar notation, Eq. (3.88) at the South Pole becomes

$$\left\{ \frac{\partial}{\partial y} \left[q_3 \left(\frac{5}{4} v_3^* - \frac{1}{4} v_1^* \right) \right] \right\}_{3,01} = \frac{5}{4} \left(q_3 v_3^* \right)_{3,0,p+1} - \frac{1}{4} \left(q_3 v_3^* \right)_{3,0,p+1} \tag{3.93}$$

and at the North Pole

$$\left\{ \frac{\partial}{\partial y} \left[q_3 \left(\frac{5}{4} v_3^* - \frac{1}{4} v_1^* \right) \right] \right\}_{3,0J} = -\frac{5}{4} \left(q_3 v_3^* \right)_{3,0,p-1} + \frac{1}{4} \left(q_3 v_1^* \right)_{3,0,p-1} \tag{3.94}$$

where the fluxes on the right-hand side of Eq. (3.93) are given by Eq. (3.91) and those on the right-hand side of Eq. (3.94) are given by Eq. (3.92).

10. Horizontally Differenced Friction Terms

The friction terms $F_1^{x,y}$ and $F_3^{x,y}$ appearing in the equations of motion (2.27) to (2.30) are given in horizontally differenced form in u,v notation by

$$F_{1,00}^{x} = -g\beta(u_{1,00} - u_{3,00})(\pi_{00}^{u})^{-2}$$
 (3.95)

$$F_{1,00}^{y} = -g\beta(v_{1,00} - v_{3,00})(\pi_{00}^{u})^{-2}$$
 (3.96)

$$F_{3,00}^{x} = g^{g}(u_{1,00} - u_{3,00})(\pi_{00}^{u})^{-2}$$

$$-\frac{2g}{\pi_{00}^{u}} C_{D} \frac{\pi_{00}^{u} + P_{T}}{RT_{4,00}^{u}} \left(\left| \vec{V}_{s} \right|_{00}^{\pi} + G \right) (0.7)u_{4,00}$$
(3.97)

$$F_{3,00}^{y} = g\beta(v_{1,00} - v_{3,00})(\pi_{00}^{u})^{-2}$$

$$-\frac{2g}{\pi_{00}^{u}} C_{D} \frac{(\pi_{00}^{u} + p_{T})}{RT_{4,00}^{u}} (|\vec{v}_{s}|_{00}^{\pi} + G) (0.7)v_{4,00}$$
(3.98)

These forms rest upon the approximation of the height difference (z_1-z_3) in Eq. (2.36) by $\Delta z(\pi/\pi_S)$, where Δz (= 5400 m) and π_S (= 800 mb) are standard values of (z_1-z_3) and π , respectively. The coefficient β thus becomes $\beta=2\pi_S\mu(\Delta z)^{-1}$, and is taken as 0.13 mb sec m⁻¹, corresponding to $\mu=0.44$ mb sec.

In Eqs. (3.97) and (3.98) the surface wind speed $|\vec{V}_s|^\pi$ is given (in u,v notation) by

$$\left|\vec{v}_{s}\right|_{00}^{\pi} = \frac{1}{2} \left(\left|\vec{v}_{s}\right|_{00}^{2} + \left|\vec{v}_{s}\right|_{-20}^{2} + \left|\vec{v}_{s}\right|_{02}^{2} + \left|\vec{v}_{s}\right|_{-22}^{2}\right)^{1/2}$$
(3.99)

where $\vec{v}_s = 0.7 |\vec{v}_4|$ and where $\vec{v}_4 = \frac{3}{2} \vec{v}_3 - \frac{1}{2} \vec{v}_1 = (u_4, v_4)$ is the wind extrapolated to level 4. Here the subscripts refer to the u,v grid (see Fig. 3.7). The gustiness term is given by the constant $G = 2.0 \text{ m sec}^{-1}$. The surface drag coefficient is given by the relations

$$C_{D} = \begin{cases} \min \left[\left(1.0 + 0.07 \middle| \vec{v}_{s} \middle|_{00}^{\pi} \right) 10^{-3}, \ 0.0025 \right], \text{ if scean} \\ 0.002 + 0.006 (z_{4}/5000 \text{ m}), \text{ otherwise} \end{cases}$$
(3.100)

where \mathbf{z}_4 is the elevation of the surface of the ground. Mence \mathbf{C}_{D} varies between 0.001 and 0.0025 over the ocean, while over either bare land or ice, \mathbf{C}_{D} is independent of the wind speed and varies between 0.002 over lowlands and sea ice to about 0.007 over the higher mountains. This increase of the drag coefficient with \mathbf{z}_4 is an attempt to simulate the increased roughness or ruggedness of the terrain in higher elevations, as suggested by the work of Cressman (1960).

As elsewhere in this section, the subscript 00 (in u,v-centered notation) denotes an arbitrary point of the u,v grid, and the superscript u denotes the average of the four surrounding points of the π (or primary) grid. Hence

$$\pi_{00}^{u} = \frac{1}{4} (\pi_{-11} + \pi_{11} + \pi_{-1-1} + \pi_{1-1})$$
 (3.101)

recalling that the π grid is displaced upward and to the left of the u,v grid (see Fig. 3.2). The factor $(\pi_{00}^u + p_T)(RT_{4,00}^u)^{-1}$ in Eqs. (3.97) and (3.98) is thus the surface air density ρ_4 . This averaging serves to "center" the pressure and temperature on the local velocity point. Note, however, that $|\vec{V}_s|_{00}^{\pi}$ also involves a 4-point averaging; although this is unnecessary for a point of the u,v grid, it is consistent with the calculation of the surface evaporation and sensible heat flux at points of the π grid (where averaging over velocity points is necessary).

In the program the frictional terms (3.95) to (3.98) are computed every fifth time step as part of the COMP 3 subroutine (instructions 9700 to 9920), and directly give the frictionally induced speed change in m sec⁻¹ for the $5\Delta t = 30$ min interval. The factor π in Eqs. (2.27) to (2.30) is effectively divided out in the finite-difference computations.

11. Moisture-Source Terms

The source term 2mng(E - C) in the moisture equation (2.35) may be written in differenced form as

$$2 \operatorname{mng}(E - C) = 2 \operatorname{(mn)}_{00} \operatorname{g}(E - C)_{00}$$

$$= \frac{\Pi_{00}}{5\Delta t} \left[(\Delta q_3)_E - (\Delta q_3)_{LS} - (\Delta q_3)_{CM} - (\Delta q_3)_{CP} \right]_{00}$$
(3.102)

where the subscript 00 denotes (in π -centered notation) an arbitrary point of the π grid (see Fig. 3.6). This source computation is carried out for level 3 every five time steps in subroutine COMP 3, instructions

11300 to 11310. Here the level-3 moisture change (in $5\Delta t$) due to evaporation is given by

$$(\Delta q_3)_{E,00} = \frac{2g}{\pi_{00}} E_{00} = \frac{2g}{\pi_{00}} (3.103)$$

according to Eq. (2.111), where E_{00} is the local evaporation rate itself. The level-3 moisture change due to large-scale condensation is given by

$$(\Delta q_3)_{LS,00} = \frac{c_p}{L} (\Delta T_3)_{LS,00}$$
 (3.104)

where (ΔT_3) is the local temperature change (over $5\Delta t$) at level 3 LS due to the large-scale latent-heat release, as given by Eq. (2.47). The level-3 moisture change due to middle-level convection is given by

$$(\Delta q_3)_{CM,00} = \frac{c_p}{L} \left[(\Delta T_1)_{CM,00} + (\Delta T_3)_{CM,00} \right]$$
 (3.105)

where (ΔT_1) and (ΔT_3) are the temperature changes (over $5\Delta t$) CM,00 CM,00 at levels 1 and 3 due to the latent-heat release in middle-level convective condensation, as given by Eqs. (2.73) and (2.74), respectively. Finally, the moisture change at level 3 due to penetrating convection is given by

$$(\Delta q_3)_{CP,00} = \frac{c_p}{L} \left[(\Delta T_1)_{CP,00} + (\Delta T_3)_{CP,00} \right]$$
 (3.106)

where (ΔT_1) and (ΔT_3) are the temperature changes (over $5\Delta t$) CP,00 at levels 1 and 3 due to the release of latent heat in penetrating convective condensation, as given by Eqs. (2.101) and (2.102), respectively.

The three moisture-change terms, Eqs. (3.104) to (3.106), collectively constitute the total moisture sink due to condensation, which we may then write as

$$\left[(\Delta q_3)_{LS} + (\Delta q_3)_{CM} + (\Delta q_3)_{CP} \right]_{00} = \frac{2g}{\pi_{00}} c_{00}^{5\Delta t}$$
 (3.107)

in analogy with (3.103) for the evaporation. Since all condensed water vapor is assumed to fall out as precipitation, we may also rewrite Eq. (3.107) in the form

$$c_{00} = (P_{LS} + P_{CM} + P_{CP})_{00}$$
 (3.108)

where P_{LS} , P_{CM} , and P_{CP} are the precipitation rates resulting from large-scale condensation, middle-level convection, and penetrating convection, as given by Eqs. (2.50), (2.76), and (2.107), respectively.

12. Diabatic Heating Terms

The heating terms $\Pi \dot{H}_1/c_p$ and $\Pi \dot{H}_3/c_p$ in Eqs. (2.31) and (2.32) may be written in differenced form as

$$00^{\rm H}_{1,00}/c_{\rm p}$$
 (3.109)

$$^{\Pi}_{00}^{\dot{H}}_{3,00}^{\prime c}_{p}$$
 (3.110)

where the subscript 00 (in π -centered notation) denotes an arbitrary point of the π grid. These terms are computed every fifth time step in the subroutine COMP 3. Here the diabatic heating rates at levels 1 and 3 are given by

$$(c_p)^{-1}\dot{H}_{1,00} = (A_1 + R_2 - R_0)_{00} \left(\frac{2g}{\pi_{00}c_p}\right) + \left[(\Delta T_1)_{CM} + (\Delta T_1)_{CP}\right]_{00} / 5\Delta t$$
 (3.111)

$$(c_{p})^{-1} \dot{H}_{3,00} = (A_{3} + R_{4} - R_{2})_{00} \left(\frac{2g}{\pi_{00}c_{p}}\right) + \Gamma_{00} \left(\frac{2g}{\pi_{00}c_{p}}\right)$$

$$+ \left[(\Delta T_{3})_{CM} + (\Delta T_{3})_{CP} + (\Delta T_{3})_{LS}\right]_{00} / 5\Delta t$$
(3.112)

according to Eqs. (2.173) and (2.174), where A_1 and A_3 are the net shortwave radiation absorbed at levels 1 and 3, and R_2 - R_0 and R_4 - R_2 are the net long-wave radiation absorbed at the two levels. These terms in Eqs. (3.111) and (3.112) therefore constitute the radiative portions of the diabatic heating. The lower-level heating also contains a contribution from the vertical sensible heat flux from the surface Γ_{00} . The terms in (ΔT_1) and (ΔT_3) are the temperature changes due to convective effects, with the subscript CM denoting midlevel convection and CP denoting penetrating or deep convection. Together with the term in the level-3 temperature change due to large-scale condensation, LS, these terms constitute the portions of the diabatic heating due to the release of the latent heat of condensation, as considered in Eqs. (3.104) to (3.106). The total diabatic heating is illustrated in Map 8, Chapter IV.

D. SMOOTHING

Aside from the smoothing built into the time finite-difference approximations themselves, relatively little explicit smoothing is performed in the present version of the program. The subroutine AVRX(K), which performs a three-point ronal averaging, is employed in the main subroutines COMP 1 and COMP 2 principally for the mass-flux variables \mathbf{u}_1^{\star} and \mathbf{u}_3^{\star} , as described in Subsection C.1 above. The only other use of AVRX(K) is with the zonal-pressure force terms $\left(\pi \frac{\partial \phi_1}{\partial \mathbf{x}} + \sigma_1 \pi \alpha_1 \frac{\partial \pi}{\partial \mathbf{x}}\right)$ and $\left(\pi \frac{\partial \phi_3}{\partial \mathbf{x}} + \sigma_3 \pi \alpha_3 \frac{\partial \pi}{\partial \mathbf{x}}\right)$ in the momentum equations, as described in

Subsection C.6 above. The effect of the use of subroutine AVRX(K) is to introduce a multiple-point zonal difference for higher latitudes to help avoid computational instability; the variables such as u_1^* are not themselves smoothed.

This selective zonal averaging subroutine is called every time step, with the number of smoothing passes made at each step (as well as the smoothing weighting factor) increasing with latitude. Denoting () the smoothed value of a variable (), the zonal smoothing subroutine AVRX(K) may be described by

$$(\bar{\ \)}_{00} = \lambda_0 (\)_{-10} + (1 - 2\lambda_0) (\)_{00} + \lambda_0 (\)_{10}$$

where the subscripts denote identity points in the (i,j) grid array, and where the weighting or smoothing factor λ_0 is given by

$$\lambda_0 = \begin{cases} 0, & \text{for } N_0 < 1 \\ [1/8(n_e/m_0 - 1)]/N_0, & \text{for } N_0 \ge 1 \end{cases}$$

Here n_e is the latitudinal separation of grid points at the equator, m_0 is the longitudinal separation of π points at the latitude of the smoothing, and N_0 is the integer part of (n_e/m_0) . The smoothing is applied N_0 times at each latitude, as shown in Table 3.7. Note that the number of applications of the smoothing operator increases from zero between the equator and ± 34 deg latitude to 11 near the poles. The strength of the smoothing as given by λ_0 is also seen to vary with latitude.

An explicit smoothing occurs in the subroutine COMP 3, where the heating rates $\mathring{\mathrm{H}}_1$ and $\mathring{\mathrm{H}}_3$ for the two model layers [as in Eqs. (2.31) and (2.32)] are first averaged together, area weighted, and then subjected to a 9-point horizontal averaging prior to their final incorporation into the temperature-change computation at each level. This smoothing is described as part of the subroutine COMP 3 (see Chapter II, Subsection G.4).

Table 3.7

SMOOTHING PARAMETERS USED IN SUBROUTINE AVRX(K)

Here λ_0 is the three-point smoothing weighting factor [as in Eq. (3.27)] and N $_0$ is the number of times the smoothing is repeated at each latitude.

φ, deg (LAT)	N _O (NM)	λ _O (ALPHA)
-34 to +34	0	0
±38	1	1.90×10^{-3}
±42	1	9.56×10^{-3}
±46	1	1.90×10^{-2}
±50	1	3.06×10^{-2}
±54	1	4.51×10^{-2}
±58	1	6.37×10^{-2}
±62	1	8.80×10^{-2}
±66	1	1.21×10^{-1}
±70	2	8.37×10^{-2}
±74	2	1.19×10^{-1}
±78	3	1.19×10^{-1}
±82	5	1.19×10^{-1}
±86	11	1.19×10^{-1}

The remaining smoothing operations are performed on the lapse rate in the subroutine COMP 4, which is called every 5 time steps. Here the temperature at levels 1 and 3 is smoothed according to

$$T_1 = \frac{1}{2} (T_3 + T_1) - \pi [TD + \frac{1}{48} (\overline{TD} - TD)]$$
 (3.113)

$$T_3 = \frac{1}{2} (T_3 + T_1) + \pi [TD + \frac{1}{48} (\overline{TD} - TD)]$$
 (3.114)

where the temperature difference (or lapse rate) TD is given by

$$TD = \frac{1}{\pi} \left(\frac{T_3 - T_1}{2} \right) \tag{3.115}$$

and () denotes the 9-point horizontal average about a point 00 of the π grid, given in π -centered notation by

$$\overline{TD}_{00} = \frac{1}{16} (TD_{-22} + 2TD_{02} + TD_{22} + 2TD_{-20} + 4TD_{00} + 2TD_{20} + TD_{-2-2} + 2TD_{0-2} + TD_{2-2})$$
(3.116)

Since the first terms of Eqs. (3.113) and (3.114) are a form of vertical averaging, this subroutine may be regarded as a three-dimensional smoothing operation, wherein the temperature at levels 1 and 3 is altered in proportion to the departure of the local lapse rate from the 9-point averaged lapse rate. If $TD = \overline{TD}$, for example, T_1 and T_3 remain unaltered by this smoothing. Viewed in another fashion, from Eqs. (3.113) and (3.114) we have

$$\frac{T_3 - T_1}{2\pi} = TD_{\text{smoothed}} = TD + \frac{1}{48} (\overline{TD} - TD)$$
 (3.117)

and the averaging may be regarded as a local smoothing of the lapse rate.

Another part of the subroutine COMP 4 (instructions 12270 to 12680) provides for the smoothing of the local velocity change through the simulation of a horizontal diffusion of momentum. This portion is omitted in the present version of the code through the assignment of a zero lateral-diffusion coefficient.

E. GLOBAL MASS CONSERVATION

Although the continuity equation (2.33) is solved at each (mass) point of the grid at each time step (see Chapter III, Subsection C.2), a small loss of mass over the globe still occurs because of the truncation caused by the retention of at most 7 decimal digits in the single-precision calculation (which does not round) of the surface pressure on the IBM 360/91 computer. Over the globe this amounts to approximately a 0.0028 percent (2.8 \times 10⁻⁵) loss of mass per day of simulated time. To correct for this effect, the subroutine GMP is used once every 24 hours; in GMP the local value of the surface pressure parameter, m, is increased (at every point) by the amount 984 mb - $p_{\rm g}$, where $p_{\rm g}$ is the global average surface pressure determined each day (as the sum of the global average of the current a distribution and the constant tropopause pressure p_{T} = 200 mb). Here the constant 984 mb is used to represent the observed global average surface pressure, and is read into the program as the loaded constant PSF. In the present version of the program this correction at each =-grid point thus amounts to approximately 0.028 mb per day.

F. CONSTANTS AND PARAMETERS

1. Numerical Data List

Although a number of the constants and parameters used in the model integration are given elsewhere [see particularly the chapters on model performance (IV), the list of symbols (VI), and the FORTRAN dictionary (VIII)], it is useful to collect them here for easy reference.

Presumably this loss would be reduced by the use of double-precision arithmetic.

Those symbols with an asterisk (*) are defined within the subroutines COMP 3 or INPUT, with the others loaded via data cards (see Chapter IV, Section A).

Constant	Symbol .	Value and Units
ratio of latent heat of conden- sation to specific heat at constant pressure, L/c	CLH*	580/0.24 deg
length of day	DAY	86,400 sec
days per year	DAYPYR*	365 days
maximum solar declination	DECMAX*	23.5π/180 radians
north/south grid-point spacing	DLAT	4 deg
east/west grid-point spacing	dløn*	$2\pi/IM$ radians (= 5 deg)
time step, Δt	DT*	360 sec
time step, At	DTM	6 min
standard value of vertical eddy mixing coefficient	ED	10 m ² sec ⁻¹
gravity, g	GRAV	9.81 m sec ⁻²
vertical shear-stress		
coefficient (× 10 ⁻⁵)	FMX	0.2 sec ⁻¹
grid points in meridional direction	JM	46
grid points in zonal direction	IM	72
thermodynamic ratio, K	KAPA	0.286
frequency of source-term calculation	NC3	5 (every 30 min)
average surface pressure	PSF	984 mb
standard sea-level pressure	PSL	1000 mb
tropopause pressure, p _T	PTRØP	200 mb

Constant	Symbol .	Value and Units
earth's radius, a	RAD	$6.3750 \times 10^6 \text{ m}$
dry-air gas constant, R	RGAS	287.0 $m^2 deg^{-1} sec^{-2}$
solar rotation period	RØTPER **	24 hr
upper model level, σ_1	SIG(1)*	0.25
lower model level, σ_3	SIG(2)*	0.75
solar constant (normalized)	sø*	2880 ly day $^{-1}$ (= 2 ly min $^{-1}$)
freezing temperature	TICE*	273.1 deg K

2. Geographical Finite-Difference Grid

The specific geographical position of the points of the 46 by 72 grid is shown in Fig. 3.12. Here the grid points of the primary or m grid are given over the oceans every 4 deg latitude and 5 deg longitude, together with the outlines of the continents and islands resolved by the interlocking points of the u,v grid. The left-hand and right-hand columns of grid points are at 180 deg longitude; the top and bottom rows are at the North and South Poles, respectively, with the latitude identification on the right of the figure. The finite-difference indices i and j are shown on the bottom and left side of the figure, respectively. This map is on the same scale as that used to show the land elevations and sea-surface temperatures in Figs. 3.13 and 3.14, and is the same as that used for the selected variables produced by the map-generation program in the figures of Chapter IV.

3. Surface Topography (Elevation, Sea-Surface Temperature, Ice, and Snow Cover)

During the course of a numerical simulation, the land surface elevation and the ocean surface temperature are held fixed, and thus serve as physical surface boundary conditions. Although these data may conceivably be changed from one simulation to another, their normal distributions are shown in Figs. 3.13 and 3.14 in the form of the programmed Map 5 output (see Map Routine Listing, Chapter VII), and

The latitude is shown on the right, and the longitude of both the left-hand and right-hand columns is 180°W. The grid indexes i and j (for the m grid) those of the primary or - grid every 4° latitude and 5° longitude (90s, ..., 6s, 2s, 2N, 6N, ..., 90N; 180W, 175W, ...). The continental and major island outlines are formed by Fig. 3.12 -- The geographical grid and land-mass outlines. The points shown over water surfaces are are shown on the bottom and left, respectively. This map is on the same scale as those zonal and meridional lines connecting points of the u,v grid (885, ..., 4S, 0, 4N, ...; of Figs. 3.13, 3.14, and 4.1 to 4.31. 88N; 177.5W, 172.5W, ...).

Fig. 3.13 -- The distribution of surface elevation, with isolines every 10³ ft and the 3000-ft contour dashed. The overprinted symbol I denotes ice-covered land. The grid-point elevation data themselves are given in Table 3.8.

temperature data themselves are given in Table 3.10.

the corresponding global grid-point values are given every 5 deg longitude and 4 deg latitude (at the points of the π grid) in the tabulation following the maps.

The land elevations shown in Fig. 3.13 are based upon the values at points of the 4 deg latitude, 5 deg longitude grid (see data tabulation), which were themselves obtained from the subjective interpolation of topographic maps. These data resemble (but are not identical to) the data given by Berkofsky and Bertoni (1955), and are tabulated in Table 3.8. In Fig. 3.13 the overprinted symbol I designates those grid points at which the land is ice covered; in the data tabulation, the elevation of these points is given separately in Table 3.9, where 0 denotes the locations of sea ice. In the present version of the model, the ice-covered points are not permitted to change their surface cover during the course of the simulation.

The ocean surface temperatures shown in Fig. 3.14 are based upon the values at points of the 4 deg latitude, 5 deg longitude grid (see data tabulation) which were obtained from the average annual sea-surface temperature data given by Dietrich (1963). These data resemble (but are not identical to) the mean of the average February and August distributions given by Sverdrup (1943), and are tabulated in Table 3.10. In Fig. 3.14 the overprinted symbol I here designates those π -grid points at which sea ice is prescribed (and held intact throughout the simulation); in the data tabulation these sea-ice points may be identified by the assigned constant temperature 0 deg C (see Table 3.9). Because the ocean's surface temperature is not allowed to change, even though there are evaporation, radiative transfer, and sensible-heat fluxes at the surface, the ocean has effectively been assumed to be of infinite thermal capacity. The surface temperatures of the sea ice, land ice, snow-covered land, and bare land, on the other hand, are allowed to change, and are separately computed (see COMP 3 in the Program Listing, Chapter VII).

All land grid points north of a seasonally varying northern snowline (SNØWN) are considered to be snow covered. Snow does not cover either ice-covered land or sea ice. The northern snowline has a 15-deg sinusoidal seasonal variation around 60 deg north latitude given by

SNØWN = 60 deg - 15 deg cos
$$\left[\frac{2\pi}{365} \text{ (day - 24.6)}\right]$$

where "day" is the number of the day of the year, with day 0 corresponding to 1 January. A constant southern snowline (SNØWS) is defined at 60 deg south latitude. Although the value of this southern snowline is required by the program for the surface-albedo calculation (see Chapter III, Section H), it actually has no function in defining snow cover, since all land south of 60 deg is permanently ice covered (see Fig. 3.13).

Table 3.8

LAND FLEVATION (100 FT)

	180W	175W	170W	165W	160W	155W	/150W	1145W	11404	135W	1306	V125W	120h	1156	/110W	105	1100W	95W
90N	*	*	*	**	*	*	*	*	*	**	nje.	*	*	*	*	*	*	*
860	*	华	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
82N	*	at.	2/2	*	χt	*	*	*	*	*	*	*	*	*	*	*	*	a¢x
78N	*	**	*	**	aţt	7,4	*	*	*	n'c	*	粹	*	*	*	1	3	8
74N 70N	7; 2¢	afe afe	*	*	*	*	**	**	*	2/2	*	*	2	3	3	3	4	8
66N	10	6	* *	* 5	14	24	28	24	*	*	*	*	4	5	5	4	*	5
62N	*	ж	3/4	っ	17	30	40	47	37	29	22	15	10	6	6	6	5	5
58N	*	*	*	*	12	24 12	32 *	37 *	4 l *	43	41	32	20	0	A	8	7	5
54N	xt:	zk	*	3	*	*	*	*	*	34 *	46 34	45	34	22	15	12	9	5
SON	*	*	**	ر بد	**	**	#/r	*	*	*	54	46	46	37	26	18	12	8
46N	*	*	÷	*;	**	*	*	*	*	*	*	33	47	49	40	27	17	11
42N	*	*	*	a/c	*	*	*	*	*	*	*	*	43	58	54	39	23	13
38N	*	**	**	*	**	**	*	*	*	*			40	62	64	50	29	15
34N	*c	*	*	*	γ. *	**	*	*	*	*	*	*	32	57	65	54	32	15
30N	**	*	**	a¦t	*	*	*	*	*	*	*	*	*	43	57	50	30	12
26N	a)x	xt:	ote .	*	*	*:	*	*	*	*	*	*	*	26	44	44	27	10
22N	a)r	atc	*	*	*	*:	*	*	*	*	*	*	*	*	28	39	29	*
18N	**	**	*	*	*	*	**	*	*	**	*	*	*	*	*	29	30	*
14N	*	2,4	*	*	*	44	*	*	*	**	*	*	*	*	*	*	2.2	20
100	**	*	zt.	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*
61	*	x(t	**	2/2	*	***	*	**	*	*	*	*	*	*	*	*	*	*
2N	*	2/2	*	**	*	x*:	*	*	*	*	*	*	*	*	*	*	*	*
25	*	n/t	z¦c	*	*	*	*	*	*	*	*	*	*	**	*	*	*	*
65	270	n¦:	a't	**	a\t	*	*	*	**	*	*	*	*	*	*	*	*	**
105	**	*	*	*	*	*	*	*	*	**	*	*	*	*	*	*	*	*
145	*	2,4	**	*	3/2	*	**	*	a¢x	*	*	*	*	*	*	*	*	
185	*	nțt.	2 ⁴ C	2,0	*	*	*	*	*	*	*	*	*	*	*	*	*	*
225	3,4	#	**	3/c	*	*	*	*	*	*	*	*	*	*	*	*	*	*
265	a¦t	*	242	n(t	*	*	nțe	*	*	*	*	**	*	*	*	*	*	*
305	*	*	*	*	*	*	*	*	3/4	nţ:	*	*	*	*	*	*	*	*
345	X tc	*	a\t	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
385	3/4	X t	*	3 /t	2,10	*	*	*	*	*	*	*	*	*	*	*	*	*
42S	a\tau	*	a¢c	*	*	*	*	2,70	*t	*	*	*	*	*	*	*	*	*
465	3 \$t	2,4	3/4	*	X t	*	*	*	**	*	#¢	*	*	*	*	*	*	*
50.5	*	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
545	*	*	*	*	3,4	n(t	*	*	*	*	*	*	*	*	*	*	*	*
588	*	*	**	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*
625	*	*	ațe	*	*	x(c	*	a¢r	2,4	*	*	*	*	*	*	*	*	*
665	*	*	*	*	*	*	nţc	*	*	xţ:	*	*	*	*	*	*	*	*
7 08	*	*	1/1	*	a)t	***	**	*	*	*	*	*	*	*	*	*	*	*
745	*	*	*	*	*	*	*	*	*	* ;	*	*	*	*	*	*	*	*
785	*	*	*	*	1 ¢e	⊅ ¢	*	rþ	*	*	*	*	*	*	*	*	*	*
825	*	X t	*	*	*	*	#¢	a¦t	*	*	*	*	*	*	*	*	*	*
865	x(c	nţe.	**	*	n¢t	*	*	*	*	*	*	*	*	*	*	*	*	*
905	*	*	242	n/t	*	a‡t	*	*	*	*	*	*	*	**	ażz	*	ź	*

Table 3.8 (cont.)

LAND FLEVATION (100 FT)

	90W	85W	HOW	75W	70W	65W	60W	55W	50W	45W	40W	35W	30W	25W	20W	15W	10₩	5 W
90N	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
86N	*	*	*	*	*	*	**	*	*	*	*	*	*	*	*	*	*	*
82N	*	*	*	*	*	12	*	*	*	*	*	*	*	*	a)t	*	*	*
78N	19	29	26	*	*	*	*	*	*	3 4¢	z¢ε	*	*	*	*	*	*	*
74N	15	18	*	*	*	*	*	*	*	*	*	*	*	*	*	*	z)t	*
70N	*	7	5	5	6	*	*	*	a)t	*	*	*	*	*	*	*	*	3/4
66N	3	2	*	*	6	5	*	»×	*	*	z)t	*	*	*	*	*	*	*
62N	*	*	*	3	*	*	*	*	*	278	*	*	2 / x	*	*	*	*	*
58N	*	*	*	4	7	6	*	*	*	*	*	*	*	*	*	2	*	2
54N	5	3	*	6	10	9	4	*	*	*	*	*	*	x ķ r	*	*	*	3
50N	7	5	6	9	10	8	*	0	*	*	*	324	*	*	*	*	*	*
46N	9	*	9	10	8	4	z‡t	228	*	2 /2	*	s\$x	*	*	*	*	*	*
42N	10	10	11	9	2/2	**	*	*	200	*	*	*	*	**	*	*	*	14
38N	9	ii	10	*	*	*	*	*	3/4	200	*	2/4	*	λλ	*	*	10	18
34N	6	7	5	*	*	2/2	*	*	*	*	**	xt.	*	*	*	a)E	*	21
30N	*	*	í	*	*	*	*	*	*	*	*	*	*	*	*	*	14	22
26N	*	*	*	*	231	*	41	*	**	*	**	*	*	*	*	*	12	17
22N	*	*	Ö	ads:	*	*	*	*	*	*	*	2/2	*	a)t	*	3	8	11
18N	13	*	*	*	o	*	*	*	*	*	*	*	*	*	*	3	7	9
14N	13	11	*	*	*	*	*	**	*	*	22	*	*	*	*	3	7	10
100	*	*	8	*	19	14	*	*	*	*	*	*	*	χk	*	*		8
6N	*	*	*	25	29	19	9	*	*	*	*	*	*	*	*	2,0	6 *	4
2N	*	*	*	30	26	14	8	4	*	*	*	*	*	*	*	*	x)t	*
25	*	*	27	31	19	8	6	5	4	3	*	*	*	*	*	*	XX.	*
65	*	*	29	3A	25	11	6	7	7	7	6	3	*	*	*	*	*	*
105	*	*	*	50	48	25	11	9	11	12	9	*	*	*	*	*	*	*
145	*	*	*	52	67	42	18	12	14	15	11	*	*	*	*	*	*	*
185	*	*	*	*	64	50	21	13	15	16	9	*	*	*	*	*	*	*
225	*	*	*	*	56	49	20	ii	13	11	*	*	*	*	*	*	*	*
265	*	*	*	*	51	45	17	8	7	*	*	*	*	*	*	*	*	*
305	*	*	*	*	43	37	13	4	*	*	*	*	*	*	*	*	*	*
345	*	*	*	*	31	27	9	2	*	*	*	*	*	*	*	*	*	*
385	*	*	*	*	2.2	17	5	*	*	*	*	*	*	*	*	**	*	*
425	*	*	*	17	20	10	*	*	*	*	*	*	*	*	*	*	*	*
465	*	*	*	20	18	*	*	*	*	*	*	*	*	*	*	*	*	*
505	*	*	*	14	14	*	*	*	*	*	*	*	*	*	*	*	*	*
545	*	*	*	*	6	*	*	*	*	*	*	*	*	*	*	*	*	*
585	*	*	*	x¢r	z)z	*	*	*	*	**	x)z	12	*	*	*	*	*	*
625	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
665	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
705	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
745	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
785	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
825	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
865	*	*	*	*	*	*	*	*	*	*	**	Ţ	*	*	*	*	*	*
905	*	*	*	*	*	*	*	*	*	*	*	*	*	*				
703	7,4	7	~	*	7	~	7	~	*	44	*	*	*	*	*	*	*	**

Table 3.8 (cont.)

LAND ELEVATION (100 FT)

	0	5 E	10F	15F	20F	25E	30E	35F	40F	45E	50E	55E	60E	65E	70E	75F	808	85E
90N	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*		*
86N	*	*	x ¢x	*	*	*	*	*	*	*	*	*	*	*	*	*		
82N	*	*	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*
78N	蛛	*	*	*	*	*	*	*	*	**	*	*	*		*	*	*	*
74N	*	*	*	*	*	*	a tr	*	*	*	*	2	*	*	*	*	*	*
70N	*	*	*	*	9	8	4	*	*	**	*	0	5	*	1	1	2	5
66N	*	*	*	10	11	8	6	3	*	2	4	8	11	7	3	2	3	6
62N	#	*	7	10	*	4	5	4	4	4	7	12	14	10	5	3	4	7
58N	*	*	*	6	*	3	5	5	5	6	8	13	15	11	6	5	7	12
54N	3	*	8	9	. 7	. 6	6	6	6	6	7	11	13	11	9	10	14	23
50N	*	16	22	21	16	12	8	6	. 7	7	6	7	9	10	14	19	25	36
46N 42N	13	20 *	26 *	28	24	17	9	8	14	13	*	4	*	14	26	36	42	48
38N	14	*	*	20	22	16	*	*	25	26	*	9	13	28	48	61	64	67
34N	19			*	10	*	9	18	31	34	27	21	26	44	66	83	93	102
30N	22	12 18	8		7	* 5	*	*	24	30	3()	31	36	48	63	-	110	131
26N	19	20	14	10			6	10	17	20	22	29	34	36	41	59	88	112
22N	15	19	20	16 18	13 17	11 16	9	*	16	16	*	18	21	19	18	27	43	55
18N	13	16	17	18	20	21	-	14	17 *	19	13	8	*	*	*	11	16	15
14N	11	14	16	18	21	23	20 24	20 31	38	25 32	15	*	*	*	*	8	8	*
100	10	14	18	21	22	22	26	38	2n 45	34	13	*	*	*	*	6	5	*
6 N	6	11	18	22	21	22	28	37	-	_	_	*	*	*	*	*	2	*
2N	*	*	14	19	20	25	33	37	39 30	26 15	*	*	1	*	*	*	*	*
25	*	*	10	18	22	29	3 <i>7</i>	36	22	*	*	*	*	**	*	*	*	*
65	*	*	*	20	28	33	37	31	16	*	*	*	*	*	*		-	•
105	*	*	*	24	34	34	32	23	*	*	*		*	*	*	*	*	*
145	*	*	*	27	36	33	28	18	*	*	4	*	*	*	*	*	*	•
185	*	*	**	26	35	31	24	14	*	6	*	*		*	*	*	*	*
225	*	*	*	23	32	30	22	11	*	5	*		*	*	*	*	*	*
265	*	*	*	17	27	30	22	*	*	*	*		*	*	*	*	*	*
305	**	*	*	*	17	22	17	*	*	*	*	*	*	*	*	*	*	Ţ.
345	*	*	*	*	7	*	*	*	*	*	*		*	*	*	794	*	*
385	*	*	nje.	*	*	*	*	*	*	*	*	*	*	*		*	*	*
425	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
465	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
508	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
545	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
585	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
625	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
665	*	*	3 \$t	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*
705	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
745	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
785	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
825	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
865	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
905	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Table 3.8 (cont.)

LAND ELEVATION (100 FT)

	901	E 95	ELOOE	105E	110E	1156					140E	145E	150E	1558	160F	165E	170E	175E
90N	*	*	*	*	*	*	*	*	*	坎	*	*	*	*	*	*	*	*
86N	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
82N	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
78N	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
74N	7	11	11	8	5	*	*	*	*	*	5	*	*	*	*	*	*	*
70N	12	18	17	13	9	6	6	10	15	17	17	15	13	11	*	*	*	*
66N	13	18	17	15	13	11	12	16	23	27	30	29	27	26	27	27	23	15
62N	12	16	18	18	20	22	22	23	25	27	27	26	24	27	31	29	21	*
58N	19	25	27	28	32	34	33	30	28	22	0	0	0	0	19	*	*	*
54N 50N	35 48	44	44	42	40	38	34	29	26	20	0	*	*	*	8	*	*	*
46N	55	57	58	51	43	34	27	22	21	18	9	*	*	*	*	*	*	*
40N	71	61	61	53	41	30	21	17	16	13	*	*	*	*	*	*	*	*
38N	108	73 105	67	54	39	26	17	14	11	*	*	1	*	*	*	*	*	*
34N	140	131	88 105	63	39	20	*	7	*	*	2	*	*	*	*	*	*	*
30N	121	117	97	70 65	38 35	16	*	*	*	1	*	*	*	*	*	*	*	*
26N	64	71	70	52	29	15 12	5 *	* *	*	*	*	*	*	*	*	*	*	*
22N	*	33	41	34	18	#	*	Ĩ.	*	*	*	*	*		*	*	*	*
18N	*	14	22	17	*	*		*	*	*	*	*		*	*	*	*	*
14N	*	*	9	7	*	*	ī	*		*	*	*	*	*	*	*	*	*
100	*	*	*	ż	*	*	*	ō	*	*	Ţ	Ţ		*	*	*	*	*
6N	*	*	1	*	**	*	*	*	*	*	*	*		*	*	*	*	*
2N	*	*	ž	*	*	2	*	*	*	*	*			*	*	*	*	*
25	*	*	*	2	*	2	*	*	*	*	*	*	*	*	*	*	*	*
68	*	*	*	*	*	*	*	*	*	*	12	12	*	*	*	*	*	*
105	*	*	*	*	*	*	*	*	*	*	*	*	4	*	*	*	*	*
145	*	*	*	*	*	*	*	*	2	2	*	*	*	*	*	*	*	*
185	*	*	*	*	*	*	*	5	6	6	5	3	*	*	*	*	**	*
225	*	*	*	*	*	3	7	9	10	9	7	6	*	*	*	*	*	*
265	*	*	*	*	*	4	8	10	10	9	8	8	6	*	*	*	*	*
305	*	*	*	*	*	*	5	7	7	7	8	10	8	*	*	*	**	*
345	*	*	*	*	*	*	1	*	*	*	5	7	6	*	*	*	*	*
385	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
425	*	*	*	*	*	*	*	*	*	*	*	1	*	*	*	*	2	*
465	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
505	*	*	*	*	*	*	*	*	*	272	*	*	*	*	*	*	*	s\$t
545	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
585	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
625	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
665	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
705	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
745	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
785	*	*	*	*	*	*	*	*	*	*	*	r‡t	*	*	*	*	*	*
825	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
865	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	2/1
905	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Table 3.9

	1 80w	175W	1700	V165W	160%	11554	1500	1466	1401	1356	1304	175h	1204	11154	1106	1050	1000	95W
9014	()	ϵ	()	()	()	()	()	()	O	()	()	()	()	()	()	()	()	()
REM	()	()	()	()	()	()	()	()	()	()	()	0	()	()	()	()	()	()
エンマ	()	()	()	()	()	()	()	()	()	()	()	()	()	0	()	()	()	()
ABM	()	(1	()	()	()	()	()	()	()	()	()	0	()	()	()	3/2	3/3	3/c
74 N	()	()	()	()	()	()	()	()	()	()	()	()	3/1	2/2	3/4	:¦:	3/4	3,4
701	()	()	()	()	4,5	3/2	3/5	3/1	()	(1	()	()	1,1	**	2/2	华	0	3/4
6611	2/2	1/2	()	*	:/3	*	3/2	2/2	3/4	2/2	3,7	华	2/1	3,2	2/4	2/2	欢	*
6211	0	0	()	()	3/2	3/2	3 10	*	3/2	3/2	3/2	*	172	3,1	苹	a¦c	3/2	**
5 K N	4	*	3/2	**	4	3/4	43	\$¦\$	3/2	3/2	432	377	7/4	1/2	n/c	2,2	**	3,2
544	**	214	*	3/3	a¦t	2/4	2 ‡:	*	ής.	3¦2	2,2	17	3,10	4 1	3/2	2/2	3/3	3,:
5 () N	*	4	**	12	***	s)t	***	**	*	42	2/2	**	***	3/0	3,2	2/2	3,1	a/c
46N	**	2/2	3/2	3/2	2/2	3/2	\$ ¹ / ₂	3/2	华	\$ ¹ 2	\$\frac{1}{2}	a/x	3 ¦.	3/c	a(c	3/3	3,4	3,42
4711	\$ 2	\$ <u>{</u> 2	3/2	3¦¢	3/t	3/2	44	**	*	2/2	*	3 ;:	**	3 /5	3/2	a):	3/2	37
380	**	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	*:	3/5	2/2	\$¦¢	**	***	1/3	3/7	3/4	3 <u>*</u> x	*tc	**	aje aje	3 /3	2): 2):
34N 30N	42 45	2)2 2)1	2/2 2/4	2(2 2(2	\$}2 2}2	ale ale	2/2 2/	2\$4 2\$2	aja nja	aja aja	2,2 2(2	3/c 3/c	#c	2/2 2/3	aje aje	4; 4;	a)x a/x	a)c
26M	***	2¦C	2/2	3/5	\$¦£	ale.	*:	3/2	** **	2/2	44		*:	aļt	3/2	a/s	**	*;c
22N	\$	2,0	2,5	4/4 2/4	4,t	44	3/c	4/s 5/s	**	aj:	3/2 3/2	:,: ¥³	alt alt	3/4 2/2	A:	2/0	٠ ۲	
180		2,5	2,2	eļe	3/2	4°	2/2 2/2	2/5	** **	z¦c	An Air	** ***	**	\$15 \$15	als:	**	杂	ajr ajs
14N	43	42	113	*	z¦t	*¦¢	43	2¦2	aļt.	aj:	ejt.	2). 2).	ar ar	alt alt	ajt.	aja aja	a):	4
ON	4	*	1,5	2/3	31:	3,12	4	2/2	a/s	*	N:	**	2/2	1/3	3/1:	2(4	a¦t	ale ale
611	2/2	3/2	: :	3/5	312	:	4	2/5	2/2	3/4	37	A ¹ 2	3/2	3/2	3/2	3,0	3/4	a)t
26	ξ¦2	3/2	3/2	2/2	42	3,2	3,2	2/2	1,2	42	4/2	ŧţε	*	*:	3/3	3/3	3/2	2,5
25	2/2	a¦s	1/2	aje.	:	215	3/2	2/2	3/2	3/2	s;	×:	3/4	»)·	3/2	3¦0	202	3/1
65	ije.	a)c	31:	2/2	1/3	3,2	a¦e	**	3/3	2/2	a¦c	a¦c	3,5	3,12	3/2	3/4	*	*
105	2/2	3,45	\$12	*	3/2	3,2	3,3	2/2	**	2/3	3,4	ajt.	3,0	3,2	3/4	X,t	3/2	3,0
145	3,10	3/2	202	a ^e t	\$15	3,5	3,5	31,7	a¦:	3/2	3/2	3,5	310	2/2	3,5	3/2	3/4	a¦c
185	3,4	4:	\$12	315	3/2	\$¦\$	2,2	:51	**	t¦t	2¦c	3/1	a¦c	aļt.	3/3	3,5	3,4	2,0
775	3,5	3/2	a¦e	2,2	3/2	2/2	\$0€	312	3/2	2/2	3,2	3,2	3 ‡¢	x/c	aļ:	3(:	3/2	n‡s
265	\$12	\$ 2	\$,2	ξ*ε	343	3,10	z¦ε	t¦t	300	3,2	3,12	3,72	1/2	3,0	3,1	3/2	a,c	3,4
305	42	3,5	$z_i^{\prime}c$	₹,0	3,17	\$12	3,0	2,2	3,4	\$10	2,2	2,4	3/:	3,5	3' ₁ .	3(c	*	3/10
345	3/2	215	\$17	3/2	3/4	3/2	a)¢	\$¦¢	*>	\$ ⁴ \$	3,2	3/4	3,5	3/1:	1,1	a¦:	2/4	3,40
385	2/2	3,4	a¦t	3,6	3;:	3/2	3,1	3/3	3,,	3/3	413	9¦¢	2,12	34:	3/2	a¦c	a‡r	2, 70
425	3,45	3,42	:¦2	\$ 12	3/2	3¦ε	3,12	2/2	\$1,2	\$16	3,5	3/2	$2_{\rm f}^{\rm fr}$	3,5	212	2,4	3,5	à¦:
465	\$¦¢	3/,:	4,3	3,00	3/3	345	3/4	\$\$\$:2	3,5	3,2	3/2	å,:	2,2	2,12	3,0	3/2	$\lambda_{p}^{\prime} g$
505	3,2	3/2	\$ 12	312	:¦:	2/c	1,1	3,5	5,1	3/11	3,2	315	3,5	3,2	3/3	3/2	2/2	3,5
545	3/2	3,2	\$12	3,2	3,4	242	3/2	100	31:	*12	**	*:	1/2	11,	3,0	3,1	a\c	#tc
585	3,2	*	2,2	312	:2	$\Sigma_{k}^{0}\mathcal{E}$	\$,5	₹*€	2,5	3,12	5,1	**	2,1	2,4	*;	3 4:	3°t	3,0
625	3,2	3,1	7,4	31.	1/2	3/2	3,3	3,5	2/2	$\hat{x}_i^{i,j}$	3,3	3/2	315	2/2	3,2	3,0	#¢t	3,1
665	()	()	()	()	()	()	()	()	()	()	()	()	()	3,'E	\$12	1/2	*;:	3,1
705	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
745	()	()	()	()	()	()	()	()	()	()	()	17	16	()	()	()	16	20
785	()	()	()	O	()	7	6	10	15	21	2×	33	37	14	ጓ ()	4 5	4()	42
825	()	()	()	()	()	()	20	25	29	34	39	43	46	50	17 6	61	64	63
RAS	50	44	48	47	46	41	44	5.1	51	53	6y +y	5 H	63	HH	74	14	8 O	78
905	8.1	뭐	₽]	R]	H]	я 1	81	P 1	٤1	8.1	8.1	R1	H]	8.]	н]	H 1	8.)	81

Table 3.9 (cont.)

ICH HEHVATIAN (100 HT)

	904			75W	70W	65W	60W	554	5()4	45W	400	45 W	3()W	254	20W	15W	101	14 511
90N	()	()	()	()	()	O	()	O	()	()	()	()	0	()	O	()	0	()
860	()	()	()	()	()	()	()	0	()	(1)	()	\circ	()	0	0	0	()	0
HZN	()	23	21	20	13	()	17	31	15	314	34	34	35	31	20	()	()	O
7RN	alt	37,0	1/4	()	()	15	28	44	55	63	66	64	52	47	29	0	(1	()
7411	欢	3¦t	()	()	()	()	()	3.3	47 47	11	14	73	58	4()	21	0	0	2,6
7()N	0	3,4	3,5	272	3,5	()	()	()	45	68	70	56	36	()	0	2)6	2/2	254
66N	2¦E	3,4	()	()	s¦t.	2/2	0		31	50	43	\cap	242	3,4	40	2,5	2,4	ajt.
62N	()	()	()	2/4	0	()	7,7	3,4	2,5	13	2/4	3,5	3,6	3%	2,6	3,'¢	3)6	215
SHN	()	n	()	x¦c	3,5	2/2	:4:	7,15	1/4	3,6	:,'¢	3,2	3,45	3/6	3/6	3,4	3,5	2,72
54N	2/E	3,2	0	神	3,5	2,1	5/2	- ¢	745	3/6	202	3,4	34.	2,00	3,5	ng.	ı¦z	3/4
SON	2/5	zie.	3/1	t/e	3,4	5¦E	$\mathfrak{I}_{\mathfrak{g}}^{1}\xi$	*1*	**	\$ ¹ ¢	3,4	2/2	$\mathcal{I}_{0}^{k}\mathcal{I}$	4¦c	2/4	3/2	4	3,4
46N	2/6	s¦s	tje	2,5	a)t	i)t	3,5	2,1	5,5	3,5	4	3,4	2/4	a¦t	345	3/6	2/2	2/4
42N	1/4	141	44	z;c	3,5	3,5	2,4	2/4	1,4	3,4	4	2/2	$\mathfrak{J}_{\mathfrak{g}}^{1}\mathfrak{C}$	3,1	3/6	$z_{jk}^{t_k}$	3,4	3,5
RN	3,42	**	172	1/2	3,45	120	7,5	3,5	$3_q^4 \xi$	2/5	26	2/2	4)4	171	3,4	2,6	2,5	3,4
34N	32	2/2	3,5	2)\$	3,5	3/c	2/2	a¦t.	$\tau_0^{\rm fc}$	3,4	$3_{\varphi}^{\circ} E$	2/6	3,5	1/4	t':	2/2	2,4	700
300	100	2/2	173	3,5	3,1	2/2	\$15	4	2,4	:¦t	3,5	1,4	2,10	2/4	274	a¦¢	.¦c	2,4
26N	3/2	2,6	4,5	5,6	3,5	***	2,1€	35	315	3/2	2/2	7/5	3,5	3/4	3,	2/6	3,5	2,
22N	3/4	1)4	2,6	3,4	z†t	3,16	3,45.	ंहैंद	3,1	3/5	***	3,5	s/c	312	2, E	3 ¹ ₈ £	3¢g	3%
180	2/2	2,4	7,1	5,4€	1)6	3/4	3,5	2/2	2,1	2,5	3,2	2,5	3/4	$\mathbb{Z}_0^k \mathbb{I}$	1,5	3,4	378	2,5
146	3/2	2¦t	*	2,5	3,6	3)6	3/5	3,5	132	7,0	3,4	42	4	a's	9(4	1/L	3,5	3,0
100	zţt.	3/2	\$ pt.	2/5	3/2	3,46	*	2°5.	1,12	2/2	3,4	s/s	3,4	431	2°5	3 ⁴ E	3,6	2/2
614	a fe	3/5	2,2	2/2	100	2)2	5)4	3,2	2,5	5,5	3,5	345	3/2	2,5	3,4	3,0	3,5	3/2
24	2/4	3/4	ile.	2,6	3,1	2,5	z(t	2/4	3,0	3,5	2,1	245	2,5	215	3/2	3,1	3,5	å _s t
25	3/4	2/0	a¦e	a)te	3,5	3/5	1,5	2,€	1/2	2,0	3,4	2/2	4	3)0	3,5	*	200	2/32
65	3 ¹ E	x;t	2,4	z)e	2)8	s¦s	3/4	*10	242	2,5	2¦¢	1,12	x¦¢	a't	a¦t	T _i t	1,1	a _k t.
105	afe ata	***	t¦¢	2,8	2/4	3,5	1,4	zţz.	3,6	÷;t	3,6	3)6	$S_{ij}^{i} E$	2,1€	3,6	1,1	$z_{i}^{l}z$	2/2
14S 18S	n)e	1/2	2/8	3,0	2/2	2,1	4	44	3/4	2)6	44	2,2	2/10	3,'€	3/2	3,4	2,⁴€	7/4
225	nţc **x	7,6	3/2	*	2/2	3,8t	3,6	5,6	s¦¢	2,50	2/2	z(c	2,6	3,5	2,5	3,4	3,0	3/2
265	.)t	2/E	3,5	z¦c	3,5	3,0	1 ¹ / ₂ ¢	3,6	**	2,4	1/2	3,5	**	x's	2,4	3,4	2,2	a)t
305	1)4	3/10	1/4 - 14	a)t	a¦t	aţt.	214	2,5	2/5	z¦t.	a¦t	344	2,4	7,4	3,1	1 /4	3,'6	3,2
345	*	3/x	a¦t ata	*	3/4	t¦t	7,5	η¢	.¦¢	2)¢	*	:;:	3,1¢	3,1	3,8	$3_{0}^{l}\mathbf{E}$	3,4	J _e z
385	~	a¦e	z¦e	**	2/4	2,2	3/¢	3,4	2,1	z¦t.	3,5	aj.	3,5	$\mathcal{I}_1^{\delta} E$	3,8	2,6	$\mathbf{J}_{g}\mathbf{f}$	2,5
425	44	aje	2°E	zţr	3,0	2/2	a¦t.	3/2	ric.	2位	()t	3,5	3,5	3,1	a¦c	*	a'r	a),t
465	2,5	*	no He	2,t 2,t	ψ¢	eţe ete	zije	2,2	2,6	1,5	s)e	5.¦£	2/2	2,2	244	z¦c	2/c	3,10
505	224	炸	ije	sje sje	7/c	a¦t	## 	;‡t	a¦¢	3/10	3,6	2/1	3/5	t't	3,2	*	2 t	1/2
545	z¦e	3/2	a/e	er Als	2/2	*	3/c	2/2	1/5	1/1	312	3/16	7)t	3,4	3/6	n'a	4,5	z <u>'</u> t
585	a¦t	*	**	3,4	7 ¹	2/4	2,0	2,5	44	3,2	1)6	2,1	χ¢	华	¥ξ	n't	2,4	N/C
625	z¦e	*,*	rja Lja	3/2		#¢	3/4	s);t	3,2	2/6	3/1	3,4	U	()	()	()	()	()
665	2/2	n't	100	0	**	## • • • •	()	()	()	()	<i>(</i>)	()	()	()	()	()	()	()
705	()	0	()			12	0	()	()	()	(1)	()	()	()	()	()	()	()
745						7 4	()	()	()	()	()	()	()	()	()	()	()	/)
785		•	12 22			24	0	()	()	()	()	()	()		21 2	IH /	+ 4	53
H25						18	()	()	()	()	()			33 4	44 1	1	71	14
865															55 7	4 5	()	86
905		-													11 H	1 5	1/4	H 7
/1/-1	., 1	.	n L	4 [14	11 ⊦	1 P	1 1	41 8	1	н 1 -	41 1	41 1	4])	(1)	4] H	1 +	1	н

Table 3.9 (cont.)

ICF FLEVATION (100 FT)

		0 5	F 10	DF 1	51	20F	25F	30F	351	4(1	F 45	F 50	133 5	51	AOF	65	76	0F 7	SF	HOF	HSF
AUN	n			()	()	()	()	O	()	0	(1	()	O	O	0			0	n	0
RAN	0			1)	()	()	O	n	()	()	(1) (1	0	()	()	()	()	()	0
AZN	())	0	0	0	0	0	O)	0	O		. ()	0	0	- (1)
780	0			\$	n	0	()	0	U	O			1	0	O	0	(1	(1)	0	()
744		*		¢		•	•	•	*	*			1	•	(1	(1	- (1	O	()	()
66N	*	z):		te te	*	•	*		¥	*	9)		•	()	•	•	•	•	•
62N	*	*		· ·	*	*	*			41	0			•	•	•	•	•	•	•	•
SAN	*	*		,	*	*	*		•		*			•	•	•	4	•	•	•	•
54N	*	*			*		4	*	¢	*				•	•	4	•	•	•	•	•
SON	*				¢	*		*	*		*			•	•	8			•	6	L
46N	*	*			•		*	*	3	¢	*	•			•		•	'	•	•	•
47N	*	*			£1	47	*	*	4					-	-	•		'	•	•	•
3AN	Xt.	*	4		•	*	*	80	*	e	*	4		-		6	•			•	•
340	*		K	;	¢.	275	e	*	Er.		*	Ę.		6						•	
30N	14	*	40	,	¢:		40		zộz			6								•	0
2611	aķt	K t		ı	¢	2 (1	2(1		6	Ф	Ų.	4'		6	Ü						
55M	*	**	دِد		Ġ:	*	274	12	*	4		¢		•	•						
IRN	*	100		,	¢	ağı:	173		φ	r.				e						62	
14N	埠	47	*		¢	4	2/7	軟		0	4	¢		ф	•				,		
100	*	170	4		¢	*	4	*	*	40		e.		•		•	•			•	•
6N	軟	*	ф		×	K t	*	ø	歌	101	4	U		į.							
24	ф	K :	*		>	*	*	軟	歌	4				•		•	4		•	•	•
25	*	æ.	a(t		2	*	*	•		10	N.			•	•	•			•	6	
65	a¢s	*	*		*	*	*	24:	ф		*		1	¢		•	•		•	•	•
105	*	*	*			*	•	*	歌		0	L.		v		4	•		•	•	•
145	ng t	4	*			*	at:	*	4	IÇ*		糠		•	•	•	•		1	4,	•
185	*	增	4	1		*		•	*	*	0	Ģ	- 1	9	6	6		e			•
225	*	K:	*			•	4	*	*		ā,	C:		•	C		6	4		•	41
265	क्री दी	*	*			•	4	•	*	4		10	•		*	4,0	•			•	•
305 345	*	*	*	4		•	*	*	ф	•	9	4	•			•		•		TO TO	
385	4	*	4	4		*	*	IĢ.	4	4	10	4	4		•	4,				•	•
425	*	**	15.			*	10	*	•	•	4	*			•		•	•		•	€ .
465		\$1	4			e.		*	*	*	10		9		•	4	•	•		•	•
505		4	彰			\$	10			e	0	A.	9		•	•	•	•		•	•
545	st:	202				t/		*	4	¢	į.	4				•	•	•		6	¢.
SHS	0	()	0	O		0	0	()	4	*		Đ.	0		4	•	•	•		c	4
625	0	Ö	0	C		0	n	Ô	()	Õ	O.	(1	í		6	•	•			4	•
665	0	O	0	C		0	0	0	0	0	0	21.	20		Ö	0	0	(1		()	(1
705	30	38	4()	47				44	41	51	56	6)	5 1		. 12	41,	42	37		(1) In pa	57
745	64	73	77	79				H4	н7	90	47	90	H.		15	66	65	13		ie fig	u i
785	86	97	46	99	10	1 10					109	106	102		16,	94	44	100		10. 1	111
425	90	44	47	100	10	3 11					111	110	104				104	111		12	1.4
RAS	49	91	47	94	9	6 4	JH				107	102	102				04	104	10		114
905	RI	A 1	PI	81	R	1 +	1		н ј	н	н	P 1	81			нΙ	HI	9.1	-	1	H]
								•	•	•					•		- 1	- 1	,	-	- 1

Table 3.9 (cont.)

ICE FLEVATION (100 FT)

	4	nF 9	5+10	0610	5F11	() - 1 1 5	+120	1125	1-1-17	1F 1 3 6	FIA	16166	L 1 L 0				11 0 70 .	F175F
901	4	0	0	0 (n	0 0	(C) ()	(1							
HAI	1	()	0			n n							•					• • •
H21	v	1)	0 (0 0												
7 R	v v					0 0												• • • • • • • • • • • • • • • • • • • •
741	1	ф	•			¢ ()										•		
701	4	*	*			¢ 1	*					• • •						()
661	j .	•				, p	*						¥	z‡r	. ,			
621		‡	\$	2 4			1/2	*					*	aţt				*
1) M A						* #	*	**			3,0		*	zýt	萍	2,42	1,71	()
541		,		> 4			¥	a/t	1/2		3,6		*	*	*	*		37,8
501				2 4			*	131	200	17.	*	a¢t	*	()	3/2	1,2	2/2	2,2
461		,					*	妆		*	1/2	*	*	*	**	a)t	a)¢	3/5
421				. 4			*	*	*	1)1	4	*	zţr.	2/2	zţc	ațe	3,5	韓
AHE			¢ ±	•			*		*	*	131	7,4	*	**	7,4	*	3/4	2/4
341			4					**	*	*	4	*	*	3¢c	2,4	aje	å _g å.	*12
301			2 10				ф И	*	*	*	1,2	1/2	a/x	*	2,0	a _v i.	252	1/2
26N			2 4					*	*	*	\$ t	a/t	144	3/26	2,72	2)2	3,4	4,€
22t			4 4				u	1/2	*	2/4	alt.	**	3(6	J*, i.	3/2	1,1	3,4	1,1
IRN							*	1/4	*	2/2	7/2	14	3,1	$2_{9}^{9}E$	3,4	328	1/2	3,4
14N							*	*	#	alje	¢s.	妆	*	31/4	2/2	और	344	2/2
100								*	*	*	*	121	1,4	3,6	*,4	3/2	345	100
6N				_			7/8	\$	*	1/2	aģs	z‡£	a)c	2^{4}_{0} E	2,4	100	aǣ	3,2
2N							*	4	*	7/2	*	* 1/2	2 , 2	$x_{\nu}^{\prime}t$	300	3)6	3/4	3¦£
25							*	*	#	3/12	37,0	*	1¢	3,4	x't	3,0	3,8	**
65	*						*	*	*	*	13	*	a),c	340	3,4	**	aft	2/2
105							*	a\$s.	*	x;	#	**	*	302	a;c	a¦c	*	2/4
145		*		•	*	172		#	131	3/2	100	zţe.	322	3,6	101	3/2	250	3/2
185	*				*	*	*	*	#	*	*	358	4	1,0	źŧ	aýt.	nje.	n _a t
225		*			*	*	*	*	*	*	N/C	1,72	2,0	3,4	4	3/2	344	$\lambda_{i}^{q}\xi$
265				ė	*	*	*	*	*	本	al _e s	*	*	3,6	Z\$1.	$\lambda_0^{i} E$	2,0	3/4
305	*	*		•		*	*	•	*	•	*	垃	376	3,1	3,5	35:	100	3/4
		*			*	*		*	*	*	234	3/ja	aůt	3/2	2 ⁴ E	炉	zfe.	4,1
265	0	*			*	*	*	*	17,1	2)1	称	ALC.	250	1/,0	3/2	3,6	S,E	3(6
305	*				*	*	•	*	*	**	30,6	- dx	- 4	37c	2/4	A/C	3,6	44
345	*	*	\$	*	*	•	*		z(z	竣	2,4	306	zÿε	352	x¦t	$2^{i}_{\phi}E$	3,0	a‡t
385	*	*	*	\$		*	*	*	aÇE	1 ⁴ E	XÇE	250	3,5	30,5	x¢€	2,5	i i	1¢t
425	*	4	*		*	**	•	*	*	\$	萍	I,c	300	300	nje	3,6	s¢t	7,4
465	4	*	ф	*	*	*	*	*	*		*	a¢z	X/a	*	NÇE	47	1,5	1/6
505	4		*	*	*	*	*	*	**	*	*	200	22	152	1,0	2/8	$\lambda_{\mu}^{1} \Gamma$	200
545	*		*	*	*	*	*	A)T	**	*	#t	*	¥	3,4	3,8	z¦t	700	2[0
545			ф	*	*	4	201	101	7	林	3,4	*	3,0	$J_{p}^{0}E$	鞍	/(t	340	$\mathfrak{I}_{\mathfrak{g}}^{k}$
625	()	()	()	O	0	()	()	*		**	*	()	0	100	*	2,6	3',1	1Út
665	0	24	17	7 H	0	()	()	()	24	11	()	,	()	()	()	()	{)	()
705	1,4	44	70	66	60	5 H	5 8	60	1.3	61	53	45	40	31	11	0	()	()
145	100	101	QQ.	96	93	42	91	89	ня	44	14	/1	65	56	44	16	- 11	0
145	113	114	111	108	1 ()4	102	49	47	93	HU	H4	19	14	toto	1.1.	()	()	0
H25	113	112	110	107	104	101	99	96	44	Hu	HA	47	184	11	51	()	()	()
HAS	103	105	101	99	97	46	95	94	91	40	HH	N by	ы 4	14	69	51	62	h()
4135	HI	HI	н 1	Яj	R]	H	HI	я ј	н 1	н	94.1	R I	я ј	н	н	н	иј	н

Table 3.10
SEA-SURFACE TEMPERATURE (DEG C)

	180W	175W	170W	165W	160W	155W	150W	145W	140W	135W	130W	125W
900	de.	24:	*;	3,2	3 ‡t	aţe	3,5	24	*	*t	*	*
NAB	3,5	\$ ¹ 2	*	2,5	3,50	2¦C	3/0	×¢ε	2/4	x;t	*	X/z
NSB	age	3/4	*	3¦\$	x;	3/5	a _t t	**	*	2 /c	3,c	*
78N	X,c	*	x¦c	*	n't	a¦c	3,4	3,1	*	莉	*c	**
74N	2,0	à¦t	aţt	*;	3,2	a¦t	3/2	*	粹	aļt	a¦c	拺
70N	3/10	*	χţτ	7,4	740	***	a¦r	3,5	*	*	3;t	*
66N	a¦t	*	afe	3/4	*	3/2	3,50	25:	*	a¦c	24:	3 ¢c
62N	*	3/10	歌	*	\$ [‡] C	a¦t	2,4	*	*	#c	*	*
58N	3.1	3.4	3.R	4.6	5.2	a¦t	7.1	7.6	7.6	x;c	$\lambda_{\epsilon}^{i}t$	2/4
54N	4.2	4.6	5 • 1	a¦t	6.5	7.2	8.1	9.0	9.5	8.9	aļ:	*
50N	5.7	6.0	6.5	7.2	7.7	8.5	9.3	10.0	10.5	10.6	10.5	x¦c
46N	7.9	8 · 2	8 • R	9.5	10.0	10.6	11.3	11.8	12.3	12.5	12.3	11.5
42N	11.3	11.4	11.9	12.5	12.8	13.3	13.8	14.1	14.3	14.2	13.6	12.0
38N	15.4	15.4	15.3	15.5	15.7	15.9	16.2	16.3	16.1	15.5	14.5	12.5
34N	18.8	18.6	18.6	18.6	18.7	18.8	18.8	18.6	17.9	17.1	16.1	14.7
30N	21.5	21.3	21.2	21.2	21.0	21.0	20.9	20.3	19.6	18.8	17.9	17.1
26N	24.0	23.B	23.5	23.3	23.1	22.9	22.5	21.8	21.3	20.5	19.8	19.2
55N	25.3	25.1	24.8	24.5	24.2	23.4	23.5	22.4	22.3	21.7	21.0	20.7
18N	26.4	26.2	25.8	25.6	25.2	24.9	24.6	24.0	23.6	23.2	23.0	23.2
14N	26.9	26.7	26.5	26.2	26.0	25.8	25.6	25.2	24.8	24.7	24.7	25.2
100	27.4	27.3	27.1	27.0	26.8	26.6	26.5	26.3	26.1	26.1	26.3	26.6
6 N	27.6	27.5	27.3	27.1	26.9	26.9	26.8	26.8	26.7	26.8	26.8	26.8
2 N	27.B	27.5	27.2	27.0	26.7	26.5	26.5	26.5	26.1	26.0	25.8	25.5
25	27.9	27.5	27.2	26.9	26.5	26.3	26.0	25.9	25.6	25.4	24.5	24.3
65	28.2	28.0	27.8	27.6	27.4	27.2	26.9	26.7	26.5	26.2	25.9	25.4
105	28.2	28.1	27.9	27.7	27.5	27.3	27.2	27.1	26.8	26.5	26.1	25 B
145	27.3	27.4	27.4	27.2	27.0	26.9	26.7	26.6	26.5	26.3	26.2	25.7
185	25.9	25.9	26.0	25.9	25.8	25.8	25.8	25.6	25.5	25.4	25.3	25.2
225	24.2	24.2	24.2	24.3	24.3	24.3	24.2	24.2	24.2	24.1	24.1	23.9
265	25.5	22.4	22.5	22.5	22.6	22.6	22.6	22.6	22.6	22.5	22.5	22.4
305	19.9	20.0	20.1	20.1	20.2	20.2	20.2	20.2	20.2	20.2	20.1	20.1
345	17.9	18.1	18.1	18.0	17.9	17.9	17.6	17.6	17.6	17.6	17.6	17.5
385	16.2	16.3	16.2	16.0	15.5	15.0	14.8	14.7	14.5	4.4	14.4	14.5
425	14.6	14.8	14.7	14.3	13.4	13.0	12.7	12.4	12.3	12.3	12.3	12.3
465	12.4	12.5	12.6	12.6	11.6	11.1	10.7	10.5	10.3	10.2	10.1	10.1
505	8.0	9.()	10.2	10.2	9.5	8.9	8.3	7.R	7.7	7.5	7.4	7.3
545	5.5	6.]	6.8	7.0	6.7	6.3	5.7	5.3	5.0	4.6	4.6	4.6
588	2.8	3.()	3.1	3.1	2.9	2.6	2.4	2.1	1.6	1.2	1.1	1.3
625	- () • 1	().1	$0 \cdot 1$	-().1	-0.1	-().5	-0.6	-0.6	-0.6	-0.7	-0.6	
665	*	3 (2)	华	X ^L T	zţε	3/2	z;	X,t	3)x	25	-U• 6	-().6 *
705	粋	3/2	#3	xβt	华	3,4	*	*	*	×tr	**	ajr
145	2,'6	s¦t	x :	3/4	2,2	*	x):	*	*	**	<i>*</i>	** **
785	3/17	$\lambda_i^{k_n}$	粹	3/.	$\mathcal{I}_{i}^{t_{i}}$	2',£	ajt	*	*	*	*	x/r
825	*	345	2,46	*	3,4	3,2	a¦:	*	*	a)t	*	***
RAS	2,5	***	3,5	*;	a¦c	x';	\$5.	*,	*	**	*	*
905	称	3/4	3,4	x;:	3/10	2;:	afr.	à,.	*	24	χι «·	*

Table 3.10 (cont.)

SEA-SURFACE TEMPERATURE (DEG C)

	120W	115W	110W	105W	100W	95W	90W	85W	80W	75W	70W	65W
90N	3 X	a/c	*	林	3,4	*	**	x¦t	**	**	*	*
86N	2°C	*	*	*	*	2,5	zķε	**	*	*	2/4	*
BSN	*	2/10	*	*	*	*	3/5	妆	*	鉄	*	*
78N	*	**	*	*	**	*	3,12	*	*	*	*	*
74N	*	240	3¦t	*	*	3,4	2,4	*	χt	*	*	a¦s.
70N	*	*	***	a¦c	**	*	**:	*	*	7,4	3/4	**
66 N	*	2/,0	坟	x¦t	*	*	2,4	*	44	zţc	*	***
65N	*	**	*	*	2/4	zţc	*	**	*	**	*	*
58N	x*c	*	*	2,5	*	*	x;	*	2,4	240	**	3/5
54N	妆	**	*	3,4	2/10	*	*	*	*	124	3,4	*
50N	*	zţt	2/4	*	*	*	a¦t	240	*	*	*	*
46N	2,4	*	*	*	*	*	*	9.1	*	*	*	*
42N	*	3/4	*	3/10	3/2	32	*	*	*	*	10.8	12.8
38N	2,2	3,14	3,45	2)*	*	*	3/5	*	*	16.0	19.0	20.2
34N	14.3	3/,0	*	3¦¢	2,40	*	2,50	zţc	*	23.1	22.4	21.9
30N	16.6	z¦¢	3/5	3,0	2,5	*	24.3	24.3	*	24.2	23.7	23.6
26N	18.7	18.8	2/1	欢	x¦c	25.1	26.3	26.3	26. R	25.7	25.4	25.3
SSN	20.8	25.0	24.5	*	*	26.0	27.0	27.4	*	26.9	26.3	26.1
18N	23.8	24.7	26.2	27.4	zţt	2/4	***	27.7	27.6	27.1	*	26.6
14N	25.7	26.3	27.2	27.7	28.0	28.2	非	*	27.3	26.7	26.2	26.4
100	26.9	27.2	27.6	27.6	27.6	27.5	27.4	27.6	*	26.1	2,4	*
6 N	26.9	26.9	26.9	26.9	26.9	26.8	26.8	26.8	26.9	* t	*	2,78
2N	25.5	25.5	25.5	25.2	25.1	25.0	25.0	25.0	25.0	*	**	*
2.5	23.8	23.5	23.5	23.3	22.9	72.4	22.0	21.4	**	*	zķt	*
65	25.2	24.9	24.6	24.3	23.7	23.2	22.4	21.0	*	a¢e	*	**
108	25.4	25.0	24.8	24.3	23.9	23.2	22.4	21.3	18.3	*	*	*
145	25.2	24.9	24.3	23.8	23.4	22.7	21.9	20.8	19.0	2,40	*	*
188	24.8	24.5	24.1	23.2	22.8	22.2	21.3	20.2	19.2	16.7	*	x‡c
225	23.8	23.6	23.7	22.8	25.5	21.5	20.7	19.9	18.7	17.1	***	*
265	22.4	22.3	22.1	21.9	21.8	21.1	20.3	19.6	18.6	17.3	*	74
305	20.0	20.0	20.0	20.0	19.8	19.3	19.0	18.4	17.4	16.3	*	*
345	17.5	17.5	17.5	17.5	17.4	17.1	16.9	16.8	16.6	15.1	*	*
385	14.6	14.6	14.6	14.6	14.6	14.5	14.5	14.5	14.4	14.0	**	**
425	12.3	12.3	12.3	12.4	12.4	12.4	12.5	12.4	12.3	*	*	*
465	10.1	10.1	$10 \cdot 1$	10.0	10.1	10.1	$10 \cdot 1$	10.1	10.3	x)x	*	10.8
508	7.3	7.3	7.4	7.5	7.5	7.6	7.7	8.0	8.1	**	*	8.5
545	4.7	4.8	5.0	5 • 1	5.3	5.6	5.9	6.2	6.6	6.7	*	6.6
585	1.6	2.1	2.3	2.5	2.7	3.1	3.4	3.7	4.1	4.7	4.3	4.1
625	-0.6	-0.6	-0.1	0.1	0.4	0.6	0.9	1.0	1.3	1.4	1.2	() . 7
665	*	-1.8	-1.5	-1.3	-().9	-0.8	-().7	-0.6	-0.6	*	*	*
708	*	岑	*	*	**	*	*	*	X/c	1 2 2	*	*
74S	*	2,70	*	*	*	*	#	*	*	*	*	*
785	*	*	*	*	*	**	*	#c	*	**	**	**
828	*	**	$z_i^t \epsilon$	*	2,1	*	**	*	*	*	*	*
865	*	a¦t	*	z¦t	*	*	2/2	*	*	*	*	*
90 S	*	3/5	*	*	**	**	*	*	**	1/1	*	*

Table 3.10 (cont.)

SEA-SURFACE TEMPERATURE (DEG C)

	60W	55W	50W	45W	40W	35W	30W	25W	20W	15W	10W	5W
90N	*	**	*	**	*	**	*	*	*	*	*	*
86N	*	**	*	*	*	*	*	*	*	*	*	*
82N	坤	*	*	*	*	*	*	*	*	*	*	*
78N	*	*	*	*	**	*	*	*	*	10/2	*	*
74N	*	*	*	单	*	*	*	*	*	*	*	-0.6
70N	*	*	*	*	*	*	*	*	*	0.5	0.5	2.5
66N	*	-0.1	*	**	*	*	4.2	5.2	5.5	5.7	5.9	6.0
62N	0.4	1.4	0.2	*	4.4	5.9	6.7	7.6	8.5	8.6	8.6	8.6
5AN	1 • 1 *	3.1	3.5	3.R	5.4	6.6	7.7	8.7	9.6	10.3	10.2	*
54N		2.5	4.6	6.3	8.0	9.5	10.4	11.1	11.5	11.6	11.4	
50N 46N	1.5	6.1	4.1 6.4	8.8	12.2	13.0	13.5 16.1	13.5	13.2	12.8	12.3 14.0	12.0
42N	14.8	15.3	14.8	11.9 15.8	15.5 17.9	16.2 17.8	17.3	15.1	14.6	14.1 15.8	14.8	13.9
38N	20.2	20.0	19.9	19.6	19.9	19.3	18.7	16.5	16.1 17.8	17.3	* T-4 * U	*
34N	21.8	21.7	21.6	21.6	21.1	20.6	20.2	19.8	19.4	18.9	18.1	*
30N	23.4	23.3	23.1	22.9	22.4	22.0	21.6	21.3	20.8	19.8	*	10.
26N	25.1	24.9	24.5	24.3	23.8	23.3	22.9	22.3	21.4	19.8	*	*
22N	26.0	25.6	25.2	24.6	24.2	23.9	23.5	22.6	21.1	#	*	*
18N	26.5	26.3	25.7	25.2	24.9	24.6	24.0	23.4	22.2	*	*	*
14N	26.7	26.7	26.6	26.1	25.7	25.3	24.9	24.6	24.5	*	*	*
10N	26.1	26.8	26.9	26.9	26.6	26.2	25.9	25.8	25.9	26.2	*	*
6N	*	26.4	26.8	26.9	26.8	26.6	26.5	26.5	26.6	26.9	26.9	*
2N	*	#	26.5	26.7	26.7	26.8	26.6	26.5	26.3	26.0	25.8	25.8
25	*	*	*	*	26.7	26.7	26.5	26.2	25.8	25.4	25.0	25.0
65	妆	**	*	*	*	*	26.6	26.1	25.8	25.4	24.9	24.4
105	*	X tc	*	*	*	26.5	26.3	25.7	25.1	24.5	23.9	23.3
145	a¢t	*	*	*	*	25.8	25.8	25.0	24.1	23.7	22.9	22.2
185	**	*	*	**	**	25.3	25.3	24.5	23.6	23.0	22.2	21.4
225	*	aft	*	*	23.9	24.5	24.5	23.8	23.0	22.4	21.7	20.8
265	*	*	*	22.1	23.5	23.0	23.0	22.9	22.3	21.B	21.3	8.05
305	*	2,4	19.3	21.8	20.7	20.5	20.6	20.8	20.6	20.1	19.7	19.2
345	*	*	18.6	19.6	18.2	18.1	18.1	18 • 1	18.1	17.8	17.6	16.9
385	*	13.2	16.6	16.4	15.0	15.2	15.1	15.0	14.9	15.0	14.6	14.0
425	11.8	11.3	13.8	13.3	12.0	12.1	11.9	11.8	11.8	11.7	11.3	10.4
465	9.6	9.1	10.4	9.6	8.5	8.1	8.1	8.0	8.2	8.1	7.1	6.6
508	7.0	6.0	7.0	6.0	4.7	4.7	4.0	4.0	3.8	3.5	3.0	2.9
545	6.0	4.9	3.8	2.5	1.5	1 • 4	1.3	1.0	0.9	0.7	0.5	0.5
585	3 • 3	2.1	0.9	0.0	-0.5	-0.6	*	*	*	*	*	ು
628	*	*	*	*	*	*	*	单	*	*	*	*
665	*	*	*	*	*	*	*	*	*	10.	*	*
705	**	**	*	*	10.	*	*	*	*	10 x	*	*
745	2)t.	*	*	*	*	*	*	*		*	*	*
785	*	*	*	<i>¥</i>	*	*	*	14	Ī	¥	Ī	ή. 10
825 865	*	*	*	*	*	10年	*	*	*	*	*	*
905	*	*	*	*	*	*	*	*	*	*	102	*
402	*	*	*	#	#	*	#	**	#	#	*	-

Table 3.10 (cont.)

SEA-SHREACE TEMPERATURE (DEG C)

0.01	0	5 E	10E	15F	20E	25F	30F	35E	40F	45E	605	
90N	*	*	**	炊	*	**	**	*	*	* *	50F	55F *
86N	**	*	*	**	*	*	*	*	*	**	*	*
82N	*	**	*	**	*	3°C	*	*	*	*	*	**
78N	*	0.0	0.5	*	**	**	a†t	*	*	*	*	*
74N	0.4	1.6	7.4	2.9	3.0	2.9	2.5	2.2	1.9	1.7	*	*
70N	4.5	5.5	6.2	5.5	*	**	**	3.0	2.4	1.9	*	**
66N	6.2	6.3	6.3	妆	*	*	*	*	2.2	*	*	*
58N	8.4	7.2	*	*	4.2	*	*	*	*	*	*	*
54N	9•1 *	8.1	7.6	*	6.1	*	*	*	*	*	*	*
50N		9.5	*	*	*	*	2/1	*	*	*	**	*
46N	11.6	*	**	淖	*	*	*	*	7,4	*	*	
42N	*		*	**	*	a‡t	*	*	*	*	9.1	*
38N	17.3	17.2	17.3	2/2	2/6	*	15.3	15.3	*		12.3	*
34N	11.92	17.4	18.0	18.5	*	19.2	2,50	*	*	2/2	*	**
30N	*	*	7;t †;t	19.6	19.6	19.6	19.5	19.5	**	*	*	xt.
26N	2/2	7/k	*	a‡x	2,6	3,00	alia.	*	*	**	*	**
22N	*	*	*	*	* X	*	3,5	26.3	7,4	x¦c	26.3	*
18N	*	**	*	*	**	*	*	×κ	2/2	*	x/a	*
14N	**	, , , , , , , , , , , , , , , , , , ,	*	*	*	*	2,10	2/c	27.7	*	*	25.8
100	*	, ,	*	*	₩	*	**	*	*	*	26.3	26.1
6N	*	.*t	xx	Ψ #	*	2,8	x¦c	*	*	‡	z‡r	26.1
2N	26.1	26.4	*	*	*	**	2/5	*	*	*	26.2	26.9
25	25.4	25.9	*	*	**	a)t alt	*	*	*	χt	26.7	27.3
65	24.4	24.9	24.9	#	*	*	*	×	*	26.7	26.9	27.5
105	23.0	23.1	23.7	**	*	*	*	*	*	26.9	27.0	27.3
145	21.6	20.7	20.9	x)r	*	*	*	*	26.9	26.8	26.8	26.6
185	20.9	19.8	18.3	×c.	*	*	*	**	26.7	26.6	*	26.2
228	20.2	19.3	17.8	**	*	*	*	*	26.3	*	26.2	25.7
265	19.8	19.1	18.0	*	*	*	*	**	25.4	**	25.0	24.7
305	19.0	18.4	18.0	16.8	*	**	*	24.5	24.4	24.0	23.7	23.3
345	16.9	16.9	17.0	17.4	*	21.1	21.1	22.6	22.3	22.0	21.4	20.9
385	13.5	13.3	14.0	15.9	17.9	18.1	18.0	20.6	20.0	19.5	19.0	18.4
425	9.9	9.8	10.1	11.3	13.3	13.3	12.3	17.0 11.5	16.5	16.4	16.4	16.3
465	6.0	5.9	6.1	6.9	7.6	7.6	7.1		11.1	11.1	11.3	11.6
508	2.8	2.8	2.9	3.0	3.5	3.5	3.4	6.6 3.2	6.0	5.9	5.1	6.7
545	0.6	0.6	0.6	0.5	0.5	0.4	0.3	0.3	2.9 0.4	2.9	3.1	3.0
588	*	*	.4:	*	**	*	*	-0.9	-0.9	0.4	0.5	0.5
625	*	*	*	*	:\$	*	**	¥	*	-()•9 *	-0.7	-0.6
665	*	*	*	*	*	*	*	*	*	**	2°t	**
705	*	*	*	*	At.	272	*	*	*	**	*}x	»)x
745	**	*	*	**	**	**	#	*	*	*	*	*
785	**	*	*	2 ; t	*	*	*	**	*	*	*	*
825	*	**	άt.	*	*	*	*	#	*	*	*	*
868	**	**	*	z‡t	*	aţt	2¦¢	2/2	*	*:	**	**
90 S	*	*	*	*	*	*	4,4	1,10	*	*	**	**

Table 3.10 (cont.)

SEA-SURFACE TEMPERATURE (DEG C)

	60F	65F	70E	75€	80F	85E	90F	95E	100F	105E	1105	1155
90N	*	3/4	*	*	*	z;c	2/2	*	*	1005	110E	115E
86N	*	3/4	**	*	**	3,40	1/2	*	*	*	*	**
850	2/0	3,42	2¦t	*	**	2/2	a¦e	*	**	ı;	*	*
78N	*	¥c	林	a¦x	*	z)t	2/2	**	*	*		x ; x
74N	xţe	**	λ¦t	2/4	2/2	a¦t	***	; x	*	**	*	*
70N	*	2,50	*	*	*	a¦t	a)r	**	*	*	**	**
66N	a¦:	x't	**	妆	**	a;t	x'c	**	*	ų.	۰۰ *	*
62N	*	*	*	3/1	*	冷	*	坎	*	*	*	**
58N	*	*	*	坹	2\$	2,18	**	*	*	*	**	*
54N	*	林	*	2,1	*	*	2/2	**	*	*		*
50N	*	x¦t	X*	z†e	2/1	*	*	*	*	**	*	*
46N	9.1	z ķ t	**	3/10	Xt.	χt	*	χ.	*		*	*
42N	*	x¦c	2%	#	*t	**	**	*	**	**	*	*
38N	**	3,5	7	aļt	*	×4	*	*	*	*	*	X*
34N	a¦t	3\$t	*	*	*	**	*	*	*	a‡t	*	*
30 N	*	3,4	林	*	2/1	*	*	X ^c	*	**	*	林
26N	2,4	2,5	3,4	*	1/2	*	*	*	*	*	*	*
55N	25.0	26.5	26.5	3/2	*	*	26.5	*	**	*	*	*
18N	26.2	27.2	27.5	1/2	a)c	27.4	27.7	*	*	3 ³ X	*	23.8
14N	26.4	27.3	27.6	z)x	**	27.7	27.9	28.2	*	2/2	25.7	26.7
100	27.0	27.6	27.9	28.0	2/0	28.0	28.1	28.3		*/*	26.7	27.2
6N	27.5	27.8	28.0	28.1	28.2	28.2	28.2	28.3	28.6	**	27.7	27.8
SN	27.6	27.8	28.0	28.1	28.1	28.1	28.1	28.2	*	28.3	28.1	27.9
25	27.6	27.7	27.8	27.9	27.9	27.9	27.9	28.0		28.2	28.2	*
65	27.4	27.5	27.5	27.6	27.6	27.6	27.7	27.7	28.1	* 30-0	28.1	*
108	26.7	26.8	26.9	27.0	27.1	27.1	27.2	27.2	27.8 27.3	28.0	28.1	28.1
145	26.1	26.0	26.0	25.9	25.8	25.7	25.7	25.8	25.9	27.6	27.7	27.8
188	25.5	25.3	25.1	24.4	24.7	24.6	24.5	24.4	24.4	26.2	26.8	27.2
228	24.5	24.3	24.1	23.5	23.3	23.1	22.9	22.7		24.7	25.3	26.3
265	23.0	22.8	22.2	21.8	21.5	21.2	20.9	20.7	22.5 20.6	22.7	23.2	x [‡] x
305	20.5	20.1	19.7	19.5	19.2	18.8	18.6	18.5		21.0	21.5	*
345	17.8	17.4	17.2	17.0	16.7	16.5	16.3	16.1	18.6 16.4	18.9	19.3	14.8
388	16.0	15.1	14.9	14.6	14.3	14.0	13.9	13.9		16.6	17.1	17.4
475	11.8	12.1	12.2	12.2	11.9	11.8	11.7	11.7	13.8 11.7	13.8	13.9	14.2
465	7.1	7.2	7.2	7.3	7.4	7.6	7.7	7.8	7.9	11.7	11.8	11.9
505	3.0	3.0	3.2	3.3	3.5	3.8	4 • ()	4.3	4.5	8 • O	8.1	8.7
545	0.5	0.5	0.7	0.9	1.1	1.5	1.7	2.0	2.2	4.7	5.0	5.6
588	-0.6	-() . 4	-0.3	-0.1	0.1	0.2	0.3	0.4		2.4	2.6	3.0
625	*	χε	xt:	*	*	₩	₩.	*	0.6	0.6	0.7	0.8
668	1/2	*	*	:4:	*	a)x	*	*	*	*	*	*
705	3/4	3/4	*	*	a¢t	×	*	*	*	*	*	*
745	*	**	*	*	**	3 /x	*	***	*	*	*	*
785	**	2,5	a\t	2,0	z)z	*	Xt.	*	*	**	*	*
825	*	**	*	2/2	*	*	*	**	*	**	*	*
865	*	7,1	*	*	x‡¢	31/10	*	*	*	*	*	*
905	*	***	2/4	2,4	*	*	*	*	*	*	*	*
								т-	*	*	*	*

Table 3.10 (cont.)

SEA-SURFACE TEMPERATURE (DEG C)

4	120F	125F	130E	135F	140F	145F	150F	155E	160F	165F	170E	175E
90N	xtc	**	粋	*	3/2	3,4	*	*	*	*	*	*
86N	*	3,40	*	*	*	蛛	3/2	*	*	*	*	*
82N	#	2/2	2,40	n's	*	*	*	*	*	*	3,4	*
78N	*	対に	تأد	x;c	*	*	*	*	*	*	*	*
74N	x;c	#	*:	*	*	*t	*	**	*	3/5	*	*
70N	*	x't	**	*	*	a‡:	*	**	*	**	*	¥t.
66N	2,40	*	*	2,40	**	*	*	*	*	**	*	*
65N	*	*	a¦t.	3/4	*	x‡t	*	*	**	**	*	*
58N	**	x¦:	*),t	*	*	*	x¦c	*	2.1		
54N	a‡c	3,4	*	**	*	3.0	3.1	*	*	3.5	2.5	2.7
SON	**	*	*	*	2 \$7	4.0	4.2	4.5	4.9		3.7	3.9
46N	**	*	2,00	*	6.1	4 . 1	4.6	6.6		5.1	5.3	5.5
42N	*	201	**	10.3	11.3	**	9.3		6.5	7.1	7.4	7.6
38N	12.0	a¦t	13.0	14.0	*	14,5	15.5	10.3	11.3	11.3	11.3	11.3
34N	14.4	14.6	16.6	3/2	19.5	19.7		16.0	16.1	16.0	15.7	15.5
30N	*	18.8	22.0	22.8	22.6	22.3	19.8	19.8	19.7	19.6	19.3	19.0
26N	20.8	24.0	24.9	24.7	24.6		22.2	22.2	22.1	22.0	21.9	21.8
22N	25.0	26.1	26.2		-	24.6	24.6	24.5	24.4	74.4	74.7	24.1
18N	27.7	27.7	27.7	26.1	26.1	26.1	26.1	26.1	26.0	25.8	25.6	25.5
14N	*	28.1	28.0	27.6	27.5	27.4	27.3	27.2	27.1	26.9	26.7	26.5
100	28.1	\$ 0.01		28.0	27.9	27.8	27.7	27.7	27.5	27.4	27.2	27.1
6N	28.2		28.1	28.3	28.3	28.2	28.1	28.0	27.9	27.8	27.7	27.6
2N	28.2	28.2	28.2	28.4	28.6	28.8	28.8	28.5	28.3	28.1	27.9	27.8
25	28.2	28.2	28.3	28.5	28.8	29.1	29.2	29.1	28.8	28.4	28.2	28.0
65	28.1	28.2	28.2	28.3	28.5	28.7	28.9	29.1	29.1	28.8	28.4	28.2
105	27.9	28 - 1	28.1	28.2	**	a/c	28.4	28.6	28.9	29.0	28.8	28.4
145	-	28.0	28.0	28.0	27.6	27.5	*	28.0	28.2	28.4	28.4	28.4
	27.3	27.3	2/2	3,00	27.4	25.4	26.2	26.6	26.8	27.0	27.2	27.3
185 225	26.4	3/5	*	*	*	3/12	24.9	25.2	25.5	25.8	25.R	25.8
		**	*	*	*	2,4	23.7	23.9	24.1	24.3	24.2	24.1
265	a¦t -t-	**	*	*	*	**	*	22 .R	23.3	22.7	22.2	22.1
305	欢	*	ațe	3,40	*	*c	*:	21.0	21.0	20.3	19.7	19.7
345	**	17.6	17.6	17.6	*	a tr	3,45	18.8	18.6	17.7	17.5	17.5
385	14.5	14.6	14.7	14.8	14.9	15.0	15.2	15.4	15.5	15.5	15.4	*
425	12.0	12.1	12.2	12.3	12.7	*(c	13.4	13.8	14.1	14.3	*	14.2
465	8.9	9.0	9.3	9.R	10.3	10.9	11.4	11.8	12.1	11.8	11.8	12.2
505	5.9	6.1	7.0	7.5	7.9	E . 4	9.0	9.1	9.2	9.0	8.5	8. 0
545	3.3	3.5	4.0	4.6	5.0	5.4	5.7	5.8	5.9	5.7	5.6	5.4
585	0.9	1.0	1.3	1.6	1.8	2.2	2.3	7.4	2.5	2.5	2.5	2.6
625	*	-0.8	-0.7	-0.6	-().4	a†t	*	0.0	0.0	0.0	0.0	-0.1
665	*	3,4	z),c	a‡r	*	aft.	*	n/c	*	*	*	-(/ • 1
705	2¦t	*	x t	3,5	1 ;	2/2	3;5	34	*	×	*	*
745	z†t	र्भः	3,5	z¦t	ಭಃ	*	aft.	24:	*	*	3)X	
785	372	2,45	3/2	315	*:	9;;	**	at.	*	** **		**
825	3/5	S.	3/10	3/4	2,12	*	afe	*	*		X 1	**
865	* :	a¦:	1,5	z¦t	970	at:	**	* *	*	#/x	**	*
905	3,10	3/t	*	#¢	*	*	ar Ar	۰ *	*	x*t	**	*
				-		7	٠,	**	#	*	2,1	*

IV. MODEL PERFORMANCE

A. OPERATING CHARACTERISTICS

1. Integration Program

The Mintz-Arakawa two-level model is written in IBM FORTRAN IV (see program listing, Chapter VII). The core size, central processing unit (CPU) time, and the input/output (I/O) requirements are based on experience with the FORTRAN H compiler on an IBM 360/91 at UCLA for a 46-by-72 array. The model uses about 400,000 bytes of core memory, and each simulated day requires about 25 minutes of CPU time and about 1000 I/O requests. All calculations are performed with single-precision arithmetic.

The program in its present form is expected to start from nonzero initial data, and the history-restart tape is used to provide the initial values for continuing the calculations. The time to restart is specified by the parameters TAUID and TAUIH (see the control-card sequence below). The tape is read until the last record is reached or until TAU from tape (expressed in hours) is less than or equal to TAUIH + 24. TAUID. If the last record on the tape (identified by -TAU) is reached before the specified time to restart, the last set of data will be used. This allows automatic continuation of the calculation from the last time data were stored on the tape.

The input parameters TRST and TERM control the disposition of the old and new sets of data. If TRST = 0, the newly computed data will be written on the old history-restart tape as if no interruption had occurred; otherwise, the new data are written at the beginning of a different tape. If TRST $\neq 0$, the parameter TERM determines whether the old history-restart tape is to be terminated after the restart data are read from it. If TERM = 0, the old tape is not terminated. The data-set reference number of the tape to be written is always 11. If TRST $\neq 0$, the initial data is read from data-set reference number 10.

Various control parameters and constants in the program are read from cards, although several of the parameters that are read in the

model's present version no longer influence the program. The topography deck following card number fourteen (MARK) is read only if a change is desired in sea-surface temperature, land elevation, or the assigned distribution of ice. All numerical values follow the standard FORTRAN convention except KAPA, which is a real number. Only the constants NCYCLE, NC3, JM, IM, MARK, LDAY, LYR, and the sequence numbers in the topography deck are in integer format. The control-card sequence and layout are as follows:

Card		Card		
Number	Name	Columns	Units	Description
1	ID	1-4		Four-character identifier
1	XLABL	5-40		Thirty-six-character identifier
2	TAUID	1-10	day	Day to start \(\) start time =
2	TAUIH	11-20	hour	Hour to start TAUIH + 24. TAUID
2	TRST	21-30		Output-tape control parameter) see re-
2	TERM	31-40		Output-tape control parameter start procedure
3	TAUO	1-10		Not used
3	TAUD	11-20	hour	Frequency to recompute solar declination
3	TAUH	21-30	hour	Frequency to write history-restart tape
3	TAUE	31-40	day	Time to stop computation
3	TAUC	41-50		Not used
4	DTM	1-10	min	Time step
4	NCYCLE	11-15	IS (1)	Time extrapolation control parameter
4	NC3	16-20	IS ⁽¹⁾	Frequency to call COMP 4 and COMP 3
5	JM	1-5		Number of N-S grid points (in m grid)
5	IM	6-10		Number of E-W grid points (in m grid)
5	DLAT	11-20	deg	Distance between N-S grid points
6	AX	1-10		Diffusion coefficient (not used)

⁽¹⁾ The IS unit is one integration time step.

Card Number	N	Card		
Mumber	Name	Columns	Units	Description
7	FMX	1-10	$10^{-5} sec^{-1}$	Shear-stress coefficient
7	ED	11-20	m	Constant used in air/ground interaction
7	TCNV	21-30	sec	Relaxation time for cumulus con- vection
8	RAD	1-10	km	Earth radius, a
8	GRAV	11-20	m sec ⁻²	Gravitational acceleration, g
8	DAY	21-30	hour	Length of day
9	RGAS	1-10	$m^2 deg^{-1}$ sec^{-2}	Gas constant, R
9	KAPA	11-20		Thermodynamic coefficient, K
10	PSL	1-10	mb	Sea-level pressure
10	PTRØP	11-20	mb	Tropospheric pressure, $p_{_{\mathrm{T}}}$
11	PSF	1-10	mb	Surface pressure, p
12	DLIC	1-10		Not used
13	KSET	1-10		Not used
14	MARK	1-3		Flag indicating presence of topography deck (sea-surface temperature and land elevation) and number of sets of cards to be read. In 46-by-72 grid version, MARK = 72.
15-376	Topogra	phy Deck	see desc	ription below.
377	CLKSW	1-4		If the characters ØFF are punched in columns 1 to 3 with column 4 blank, the solar declination will remain fixed.
377	RSETSW	11-14		If the characters RESE are punched in columns 1 to 4, the day and year counters (SDEDY and SDEYR) will be set to LDAY and LYR.
377	LDAY	21-23	day	Day of year if time is reset
377	LYR	31-34	year	Year if time is reset

The topography deck is read only if MARK $\neq 0$. The deck contains 2 + 5 · MARK cards and is read in subroutine INIT 2. The topography deck card layout is as follows:

Number		
of Cards	Name	Description
1	TEMS CL	Four characters in columns 1 to 4. Indicates temperature scale of sea-surface temperature: FAHR = Fahrenheit, CENT = centigrade.
3•MARK	Sea-surface temperature	'MARK' is the number of three-card sets that define the ocean temperature for each longitude, beginning at the south pole and extending north. For the 46-by-72 grid, the numbers each take four columns (a decimal point is implicit between the third and fourth columns), with fifteen numbers on the first and second cards and sixteen numbers on the third card. The longitude grid number (i = 1-72) is in columns 79 and 80 of each card of a set, and must be sequential. Special numbers indicate points that are not open ocean: -640 for land without ice, and -960 for land ice or sea ice.
1	HS CL	Four characters in columns 1 to 4. Indicates distance scale of land elevation: FEET = feet/100, METE = meters/10.
2 • MARK	Land elevation	'MARK' is here the number of two-card sets that define the land elevation for each longitude, beginning at the south pole and extending north. For the 46-by-72 grid, the numbers each take three columns (a decimal point is implicit following the third column), with twenty-five numbers on the first card and twenty-one numbers on the second card. The longitude grid number (i = 1-72) is in columns 79 and 80 of each card of a set, and must be sequential. The elevations must be in either hundreds of feet or tens of meters. The entries in this deck corresponding to sea surface must be zero or blank.

The principal output of the model is written on magnetic tape, and a history-restart tape is written at specified intervals. Eighteen logical records are written with a frequency of TAUH: TAU and C, P, U, V, T, Q3, TØPØG, PT, GW, TS, GT, SN, TT, Q3T, SD, H, TD, -TAU and C. These arrays contain all constants and current variables, and in addition, several arrays of packed data generated in subroutine COMP 3. [Note

that TS is equivalent to UT(1,1,2) and SN is equivalent to VT(1,1,2) in the data from subroutine COMP 3.] In the present version of the model these records are written on tape every 6 hours (= TAUH). The last logical record (-TAU,C) is identified as the last record written on the tape, and will be written over the next time the tape is written; hence, only seventeen records are saved every TAUH. A test is made before writing the tape to determine if it is properly positioned. About sixty sets of seventeen logical records can be saved on a 2400-ft reel of tape. The automatically printed output consists of the input parameters, the time at each integration step, and the amount of pressure added at each grid point every twenty-four hours of simulated time in the subroutine GMP.

2. Map-Generation Program

The map-generation program for use with the model uses about 520,000 bytes of core, and averages about 0.2 seconds of CPU time and about 5 I/O requests for each map generated. This program reads the data produced by the model and processes them to form arrays of data in map form. The source of the basic data may be tape or disk.

The tape input format is the same as the tape output from the model: TAU and C, P, U, V, T, Q3, TØPØG, PT, GW, TS, GT, SN, TT, Q3T, SD, H, TD. The first logical record on a disk is always TØPØG, which does not change during a run. The subsequent logical records for each time step that was saved are TAU and C, P, U, V, T, Q3, PT, GW, TS, GT, SN, TT, Q3T, SD.

The card input to the map-generation program consists of an interval and data-source control card, followed by as many as ninety-nine map selection cards. The end of the map selection card deck is indicated by a blank card. The interval and data-source control card contains ID (the time, in days, to start generating the map arrays), TEND (the time, in days, to stop generating the map arrays), and TAPIN (the data-source indicator). The card layout is as follows:

Some arrays may be referred to by different names. For example, Q(J,I,K) contains π , U1, U3, V1, V3, T1, T3, and Q3 for K=1 through 8. See the common and equivalence block in Chapter VII for more detail.

Parameter	Card Columns	
TØ	1-10	
TEND	11-20	
TAPIN	21-24	

The desired maps will be generated for TØ, TEND, and for each intermediate time available from the data source. If the characters TAPE are punched in columns 21 to 24 (TAPIN), the data source is a tape; otherwise the source is assumed to be a disk.

The map selection cards contain MAPN \emptyset (the map number) and SURF (the σ surface, < 2.0, or the pressure level, in millibars, at which the map is to be calculated). The card layout is as follows:

	Card
Parameter	Columns
MADWA	
MAPNØ	1-2
SURF	3-12

Some values of SURF are not valid for certain maps, and in some cases the following convention has been used:

topography maps: SURF < 2.0 for ocean temperature

SURF ≥ 2.0 for surface elevation

cloudiness maps: SURF ≤ 0.5 for high cloudiness

SURF = 1.0 for low cloudiness

0.5 < SURF ≠ 1.0 for middle cloudiness

SURF > 1.0 for cloudiness (maximum)

The processed data representing each requested map array are written on tape along with various other data, and the tape may be used for further processing and map displays. The map array is dimensioned (JM, IM), where JM is the total number of north/south grid points and IM is the total number of east/west grid points. One logical

record is written for each map, and contains the following data:

Name and	
Dimension	Description
TAU (1)	Time in hours
ID (1)	Four-character identification from the model
MAPNØ (1)	Map number
NAME (13)	Map title
SURF (1)	Sigma surface or pressure level for which the map is generated
STAGI (1) STAGJ (1)	Logical variables indicating whether the maps are staggered (offset) in the I and J directions
SINT (1)	Not used in the present version
WØRK2 (JM, IM)	Map array
ZM (JM)	Zonal mean
ZM2 (JM)	Zonal mean, excluding points on land or ice
ZMM (1)	Global mean

The printed output consists of the input parameters, along with the map time, number, surface or level, and map title of each record as written on the tape.

B. SAMPLE MODEL OUTPUT

1. Maps of Selected Variables

To illustrate the general nature and structure of the solutions of the circulation model, a series of programmed map outputs for selected variables has been developed (see Map Routine Listing in Chapter VII). Presented here are samples of this output for the primary dependent variables $\mathbf{p_s}$, $\mathbf{u_1}$, $\mathbf{u_3}$, $\mathbf{v_1}$, $\mathbf{v_3}$, $\mathbf{T_1}$, $\mathbf{T_3}$, and $\mathbf{q_3}$ (as represented by the relative humidity), and for the geopotential heights. A selection of variables related to the heat and water balance in the model layers and at the surface is also given. These data are for day 400 (28 January, hour 0 GMT) of a basic or control simulation of

northern-hemisphere winter, with the program as listed in Chapter VII and with the fixed sea-surface temperature and ice distributions as shown in Chapter III.

For each of the maps shown below, a brief identification and description of the mapped quantity is given on the facing page, while the values of the minimum and dashed isolines and of the isoline interval are given at the upper right of each map's label. The symbols H and L designate locations of local maxima and minima, respectively, that are not resolved by the selected isoline interval. A rectangular map representation of the spherical grid has been used for convenience, with the points of the π grid and continental outlines shown as in Fig. 3.12. For each map the designation S/P denotes the σ level of the map, with S/P = 1 for those maps without a level designation as well as for the surface. The velocity, temperature, and geopotential heights may be generated for any $0 \le \sigma \le 1$ by extrapolation and interpolation from the solutions at $\sigma = 1/4$ and $\sigma = 3/4$, and may also be displayed for any pressure surface $p_T \le p \le p_s$ (see Map Routine Listing, Chapter VII). The complete list of available maps is given in Chapter VII just before the map code listings

Those maps listed in Table 4.1 are given in σ coordinates, with the exception of the geopotential height in Map 6, which is given for both σ and p surfaces.

Table 4.1
LIST OF MAPS OF SELECTED VARIABLES

Мар	Title		
1	Smoothed sea-level pressure ($\sigma = 1$)		
2	Zonal (west/east) wind component ($\sigma = 1/4, 3/4$)		
3	Meridional (south/north) wind component ($\sigma = 1/4, 3/4$)		
4	Temperature ($\sigma = 1/4, 3/4$)		
6	Geopotential height ($\sigma = 1/4$, $3/4$; $p = 400$, 800 mb)		
8	Total diabatic heating ($\sigma = 1/4, 3/4$)		
9	Large-scale precipitation rate		
10	Sigma vertical velocity ($\sigma = 1/2$)		
11	Relative humidity ($\sigma = 3/4$)		
12	Precipitable water		
13	Convective precipitation rate		
14	Evaporation rate ($\sigma = 1$)		
15	Sensible heat flux ($\sigma = 1$)		
16	Lowest-level convection ($\sigma = 1$)		
19	Long-wave heating in layers ($\sigma = 0$ to 1/2, $\sigma = 1/2$ to 1)		
20	Short-wave absorption (heating) in layers ($\sigma = 0$ to 1/2, $\sigma = 1/2$ to 1)		
22	Surface short-wave absorption ($\sigma = 1$)		
23	Surface air temperature ($\sigma = 1$)		
24	Ground temperature ($\sigma = 1$)		
25	Ground wetness ($\sigma = 1$)		
26	Cloudiness (high, middle, low)		
28	Total convective heating in layers ($\sigma = 0$ to 1/2, $\sigma = 1/2$ to 1)		
29	Latent heating ($\sigma = 1/2$ to 1)		
30	Surface long-wave cooling ($\sigma = 1$)		
31	Surface heat balance ($\sigma = 1$)		

Fig. 4.1. Smoothed Sea-Level Pressure (Map 1)

$$(mb - 1000 mb)$$

This map is calculated from the expression

$$p_s \exp\left(\frac{\phi_4}{RT}\right) - 1000 \text{ mb}$$

where $\mathbf{p_s}$ is the surface pressure, ϕ_4 is the geopotential at the ground, R is the dry-air gas constant, and $\overline{\mathbf{T}}$ is the average temperature between level 4 and sea level, given by

$$\overline{T} = T_4 + \frac{1}{2} \frac{\gamma \phi_4}{g}$$

Here $T_4 = \frac{3}{2} T_3 - \frac{1}{2} T_1$ is the air temperature extrapolated to the surface, g is acceleration of gravity, and γ is an assumed constant lapse rate in the hypothetical layer between the earth's surface and sea level, taken here as $\gamma = 0.6$ deg C/100 m. The resulting sea-level pressures are then averaged over the local 9 points at which pressure is computed. At nonpolar points this smoothing operator is

()₀₀, smoothed =
$$\frac{1}{16}$$
 [()₋₂₂ + 2()₀₂
+ ()₂₂ + 2()₋₂₀ + 4()₀₀ + 2()₂₀
+ ()₋₂₋₂ + 2()₀₋₂ + ()₂₋₂]

where the subscripts (in π -centered notation) refer to adjacent points of the π grid (see Fig. 3.6).

The dashed line is $1000~\mathrm{mb}$ and the isoline interval is 5 mb. -- Smoothed sea-level pressure. Fig. 4.1

This map is calculated from the expression

$$u = 2 \left[u_3 \left(\sigma - \frac{1}{4} \right) + u_1 \left(\frac{3}{4} - \sigma \right) \right]$$

with $0 \le \sigma \le 1$ an arbitrary σ surface. For $\sigma = 1/4$ and $\sigma = 3/4$ this reduces to the primary variables u_1 and u_3 , respectively, and for other σ represents a linear extrapolation and interpolation of u in σ (or p) space. The zonal wind component may also be generated for an arbitrary pressure surface p, in which case σ in the above expression is replaced by $(p-p_T)/(\pi^U)$, where π^U is the average of π at the four π points surrounding each u, v point. The symbols E and V designate locations of local maxima of positive (eastward) and negative (westward) zonal wind speed, respectively, which are not resolved by the selected isoline interval.

-- Zonal (u) wind speed at $\sigma = 1/4$. The dashed line is 0 and the isoline interval is 5 m sec⁻¹. Fig. 4.2

Fig. 4.3. Zonal (West/East) Wind Component (Map 2) (m sec -1)

This map is calculated from the expression

$$u = 2 \left[u_3 \left(\sigma - \frac{1}{4} \right) + u_1 \left(\frac{3}{4} - \sigma \right) \right]$$

with $0 \le \sigma \le 1$ an arbitrary σ surface. For $\sigma = 1/4$ and $\sigma = 3/4$, this reduces to the primary variables u_1 and u_3 , respectively, and for other σ represents a linear extrapolation and interpolation of u in σ (or p) space. The zonal wind component may also be generated for an arbitrary pressure surface p, in which case σ in the above expression is replaced by $(p-p_T)/(\pi^u)$, where π^u is the average of π at the four π points surrounding each u, v point. The symbols E and V designate locations of local maxima of positive (eastward) and negative (westward) zonal wind speed, respectively, which are not resolved by the selected isoline interval.

Fig. 4.3 -- Zonal (u) wind speed at $\dot{}$ = 3/4. The dashed line is 0 and the isoline interval is 5 m sec⁻¹.

Fig. 4.4. Meridional (South/North) Wind Component (Map 3) (m sec⁻¹)

The map is calculated from the expression

$$v = 2 \left[v_3 \left(\sigma - \frac{1}{4} \right) + v_1 \left(\frac{3}{4} - \sigma \right) \right]$$

with $0 \le \sigma \le 1$ an arbitrary σ surface. For $\sigma = 1/4$ and $\sigma = 3/4$, this reduces to the primary variables v_1 and v_3 , respectively, and for other σ represents a linear extrapolation and interpolation of v in σ (or p) space. The meridional wind component may also be generated for an arbitrary pressure surface p, in which case σ in the above expression is replaced by $(p-p_T)/(\pi^U)$, where π^U is the average of π at the four π points surrounding each u, v point. The symbols v and v designate locations of local maxima of positive (northward) and negative (southward) meridional wind speed, respectively, which are not resolved by the selected isoline interval.

Fig. 4.4 -- Meridional (v) wind speed at $\sigma=1/4$. The dashed line is 0 and the isoline interval is 5 m sec⁻¹.

Fig. 4.5. Meridional (South/North) Wind Component (Map 3) (m sec⁻¹)

This map is calculated from the expression

$$v = 2 \left[v_3 \left(\sigma - \frac{1}{4} \right) + v_1 \left(\frac{3}{4} - \sigma \right) \right]$$

with $0 \le \sigma \le 1$ an arbitrary σ surface. For $\sigma = 1/4$ and $\sigma = 3/4$, this reduces to the primary variables v_1 and v_3 , respectively, and for other σ represents a linear extrapolation and interpolation of v in σ (or p) space. The meridional wind component may also be generated for an arbitrary pressure surface p, in which case σ in the above expression is replaced by $(p-p_T)/(\pi^U)$, where π^U is the average of π at the four π points surrounding each u, v point. The symbols v and v designate locations of local maxima of positive (northward) and negative (southward) meridional wind speed, respectively, which are not resolved by the selected isoline interval.

Fig. 4.5 -- Meridional (v) wind speed at $\cdot = 3/4$. The dashed line is 0 and the isoline interval is 5 m sec⁻¹.

This map is calculated from the expression

$$T = \frac{(\sigma_{\pi} + p_{T})^{\kappa}}{p_{3}^{\kappa} - p_{1}^{\kappa}} \begin{cases} \frac{T_{1}}{p_{1}^{\kappa}} [p_{3}^{\kappa} - (\sigma_{\pi} + p_{T})^{\kappa}] \end{cases}$$

$$+\frac{T_3}{p_3^{\kappa}} [(\sigma_{\pi} + p_T)^{\kappa} - p_1^{\kappa}]$$
 - 273.1 deg

with $0 \le \sigma \le 1$ an arbitrary σ surface. This represents the linear interpolation and extrapolation of the potential temperature $0 = T(p_0/p)^K$ in p^K space. For $\sigma = 1/4$ and $\sigma = 3/4$, this reduces to the primary variables T_1 and T_3 , respectively. Here p_T is the tropopause pressure (= 200 mb) and $\kappa = 0.286$. The temperature may also be obtained at an arbitrary pressure surface $p_T \le p \le p_s = \pi + p_T$ by replacing $(\sigma\pi + p_T)$ in the above expression by p.

Fig. 6.6 -- Tempererure at . = 1/4. The dashed line is -20°C and the isoline interval is 5 deg C.

This map is calculated from the expression

$$T = \frac{(\sigma\pi + p_T)^{\kappa}}{p_3^{\kappa} - p_1^{\kappa}} \left\{ \frac{T_1}{p_1^{\kappa}} [p_3^{\kappa} - (\sigma\pi + p_T)^{\kappa}] \right\}$$

$$+\frac{T_3}{p_3^{\kappa}} [(\sigma \pi + p_T)^{\kappa} - p_1^{\kappa}]$$
 - 273.1 deg

with $0 \le \sigma \le 1$ an arbitrary σ surface. This represents the linear interpolation and extrapolation of the potential temperature $\theta = T(p_0/p)^K$ in p^K space. For $\sigma = 1/4$ and $\sigma = 3/4$, this reduces to the primary variables T_1 and T_3 , respectively. Here p_T is the tropopause pressure (= 200 mb), and $\kappa = 0.286$. The temperature may also be obtained at an arbitrary pressure surface $p_T \le p \le p_S = \pi + p_T$ by replacing $(\sigma\pi + p_T)$ in the above expression by p.

Fig. 4.7 -- Temperature at $\tau = 3/4$. The dashed line is $0^{\circ} C$ and the isoline interval is 5 deg C.

Fig. 4.8. Geopotential Height of σ Surface (Map 6) (100 m)

This map is calculated from the expression

$$z = \frac{\phi + \phi_4}{10^2 \text{ g}}$$

where φ_4 is the geopotential of the earth's surface, g is the acceleration of gravity, and where the geopotential φ of an arbitrary σ surface is given by

$$\phi = \frac{R}{2} \left\{ T_1 \left[\frac{p_1 - p_T}{p_1} + \frac{p_3^{2\kappa} - p_1^{2\kappa} + 2p_1^{\kappa} p_3^{\kappa} - 4(\sigma \pi + p_T)^{\kappa} p_3^{\kappa} + 2(\sigma \pi + p_T)^{2\kappa}}{2\kappa p_1^{\kappa} (p_3^{\kappa} - p_1^{\kappa})} \right] \right\}$$

$$+ T_{3} \left[\frac{p_{3} - p_{T}}{p_{3}} + \frac{p_{3}^{2\kappa} - p_{1}^{2\kappa} - 2p_{1}^{\kappa}p_{3}^{\kappa} + 4(\sigma\pi + p_{T})^{\kappa}p_{1}^{\kappa} - 2(\sigma\pi + p_{T})^{2\kappa}}{2\kappa p_{3}^{\kappa}(p_{3}^{\kappa} - p_{1}^{\kappa})} \right] \right\}$$

Here p_T is the tropopause pressure (= 200 mb), κ = 0.286, and R is the dry-air gas constant. For σ = 1/4 and σ = 3/4, this reduces to ϕ_1 and ϕ_3 , respectively, while for other σ it represents a linear interpolation and extrapolation of the potential temperature in p^K space. The geopotential height of an arbitrary pressure surface $p_T \leq p \leq \pi + p_T$ may also be obtained by replacing $(\sigma\pi + p_T)$ in the above expression by p (see Figs. 4.8a and 4.9a).

The dashed line is 7000 m and the isoline interval is 100 m. -- Geopotential height at $\sigma = 1/4$. Fig. 4.8

Fig. 4.8a. Geopotential Height of Pressure Surface (Map 6) (100 m)

This map is calculated from the expression

$$z = \frac{\phi + \phi_4}{10^2 \text{ g}}$$

where ϕ_4 is the geopotential of the earth's surface, g is the acceleration of gravity, and where the geopotential φ of an arbitrary p surface is given by

$$\phi = \frac{R}{2} \left\{ T_1 \left[\frac{p_1 - p_T}{p_1} + \frac{p_3^{2\kappa} - p_1^{2\kappa} + 2p_1^{\kappa} p_3^{\kappa} - 4p_3^{\kappa} p_3^{\kappa} + 2p_1^{2\kappa}}{2\kappa p_1^{\kappa} (p_3^{\kappa} - p_1^{\kappa})} \right] \right\}$$

$$+ T_{3} \left[\frac{p_{3} - p_{T}}{p_{3}} + \frac{p_{3}^{2\kappa} - p_{1}^{2\kappa} - 2p_{1}^{\kappa}p_{3}^{\kappa} + 4p^{\kappa}p_{1}^{\kappa} - 2p^{2\kappa}}{2\kappa p_{3}^{\kappa}(p_{3}^{\kappa} - p_{1}^{\kappa})} \right] \right\}$$

Here p_T is the tropopause pressure (= 200 mb), κ = 0.286, and R is the dry-air gas constant. For $p = p_1$ and $p = p_3$, this reduces to the height of the 400-mb and 800-mb surfaces, respectively, while for other p it represents a linear interpolation and extrapolation of the potential temperature in p^K space. The geopotential height of an arbitrary σ surface $0 \le \sigma \le 1$ may also be obtained by replacing p in the above expression by $(\sigma\pi + p_T)$ (see Figs. 4.8 and 4.9).

Level shown in map at right: p = 400 mb.

Fig. ..8a -- Geopotential height at $p=400 \, \mathrm{mb}$. The dashed line is 7000 m and the isoline interval is 100 m.

Fig. 9. Geopotential Height of σ Surface (Map 6) (100 m)

This map is calculated from the expression

$$z = \frac{\phi + \phi_4}{10^2 \text{ g}}$$

where ϕ_4 is the geopotential of the earth's surface, g is the acceleration of gravity, and where the geopotential φ of an arbitrary σ surface is given by

$$\phi = \frac{R}{2} \left\{ T_1 \left[\frac{p_1 - p_T}{p_1} + \frac{p_3^{2\kappa} - p_1^{2\kappa} + 2p_1^{\kappa} p_3^{\kappa} - 4(\sigma \pi + p_T)^{\kappa} p_3^{\kappa} + 2(\sigma \pi + p_T)^{2\kappa}}{2\kappa p_1^{\kappa} (p_3^{\kappa} - p_1^{\kappa})} \right] \right\}$$

$$+ T_{3} \left[\frac{p_{3} - p_{T}}{p_{3}} + \frac{p_{3}^{2\kappa} - p_{1}^{2\kappa} - 2p_{1}^{\kappa}p_{3}^{\kappa} + 4(\sigma\pi + p_{T})^{\kappa}p_{1}^{\kappa} - 2(\sigma\pi + p_{T})^{2\kappa}}{2\kappa p_{3}^{\kappa}(p_{3}^{\kappa} - p_{1}^{\kappa})} \right] \right\}$$

Here p_T is the tropopause pressure (= 200 mb), κ = 0.286, and R is the dry-air gas constant. For σ = 1/4 and σ = 3/4, this reduces to ϕ_1 and ϕ_3 , respectively, while for other σ it represents a linear interpolation and extrapolation of the potential temperature in p^K space. The geopotential height of an arbitrary pressure surface $p_T \leq p \leq \pi + p_T$ may also be obtained by replacing $(\sigma\pi + p_T)$ in the above expression by p (see Figs. 4.8a and 4.9a).

Fig. 4.9 -- Geopotential height at σ = 3/4. The dashed line is 2500 m and the isoline interval is 250 m.

Fig. 4.9a. Geopotential Height of Pressure Surface (Map 6) (100 m)

This map is calculated from the expression

$$z = \frac{\phi + \phi_4}{10^2 \text{ g}}$$

where ϕ_4 is the geopotential of the earth's surface, g is the acceleration of gravity, and where the geopotential ϕ of an arbitrary p surface is given by

$$\phi = \frac{R}{2} \left\{ T_1 \left[\frac{p_1 - p_T}{p_1} + \frac{p_3^{2\kappa} - p_1^{2\kappa} + 2p_1^{\kappa} p_3^{\kappa} - 4p_3^{\kappa} p_3^{\kappa} + 2p_2^{2\kappa}}{2\kappa p_1^{\kappa} (p_3^{\kappa} - p_1^{\kappa})} \right] \right\}$$

$$+ T_{3} \left[\frac{p_{3} - p_{T}}{p_{3}} + \frac{p_{3}^{2\kappa} - p_{1}^{2\kappa} - 2p_{1}^{\kappa}p_{3}^{\kappa} + 4p^{\kappa}p_{1}^{\kappa} - 2p^{2\kappa}}{2\kappa p_{3}^{\kappa}(p_{3}^{\kappa} - p_{1}^{\kappa})} \right] \right\}$$

Here p_T is the tropopause pressure (= 200 mb), κ = 0.286, and R is the dry-air gas constant. For $p=p_1$ and $p=p_3$, this reduces to the height of the 400-mb and 800-mb surfaces, respectively, while for other p it represents a linear interpolation and extrapolation of the potential temperature in p^K space. The geopotential height of an arbitrary σ surface $0 \le \sigma \le 1$ may also be obtained by replacing p in the above expression by $(\sigma\pi + p_T)$ (see Figs. 4.8 and 4.9).

Level shown in map at right: p = 800 mb.

Fig. 4.0a -- Geopotential height at p = 800 mb. The dashed line is 2300 m and the isoline interval is 100 m.

This map is calculated from the expression

$$H = 2\left[H_1(\frac{3}{4} - \sigma) + H_3(\sigma - \frac{1}{4})\right]48$$

where H_1 and H_3 are the net temperature changes in the upper and lower layers, respectively, over a time interval $5\Delta t$ (the time interval over which the heating is calculated by means of the subroutine COMP 3). Here

$$H_{1} = (\Delta T_{1})_{CM} + (\Delta T_{1})_{CP} + \left(\frac{A_{1} + R_{2} - R_{0}}{c_{p}} \frac{2g}{\pi} \frac{1}{48}\right)$$

$$H_{3} = (\Delta T_{3})_{CM} + (\Delta T_{3})_{CP} + \frac{L}{c_{p}} PREC + \left(\frac{A_{3} + R_{4} - R_{2} + F4}{c_{p}} \frac{2g}{\pi} \frac{1}{48}\right)$$

where (ΔT_1) and (ΔT_1) are the temperature changes (over $5\Delta t$) due to middle-level and penetrating convective heating in the upper layer, respectively [with (ΔT_3) and (ΔT_3) similarly defined for the lower layer], A_1 and A_3 are the net rates of short-wave radiant-energy absorption in the two layers, R_0 , R_2 , and R_4 are the upward long-wave radiative flux at each level, F4 is the upward flux of sensible heat from the surface, L is the latent heat of condensation, and PREC is the large-scale condensation or precipitation rate. The factor $(2g/\pi)^{-1}$ represents the mass in each layer (per unit area), and the factor 48 (the number of times in a day the heating is calculated) converts to the desired units (see Chapter II, Sections F and G, and instructions 11410 to 11490, COMP 3, for further details).

For σ = 1/4 and σ = 3/4, this expression reduces to the net heat-induced temperature changes in the upper and lower layers, H₁ and H₃, respectively. For other $0 \le \sigma \le 1$ it represents the assignment of the layer's temperature change to its midpoint, and the subsequent linear interpolation and extrapolation in σ (or p) space. This representation of the diabatic heating may also be generated for an arbitrary pressure, p, by replacing σ in the above expression by $(p - p_T)/\pi$.

Fig. .10 -- Total diabatic heating rate at z = 1/4. The dashed line is 0 and the isoline interval is 5 deg day⁻¹.

Fig. 4.11. Total Heating (Map 8) (deg day⁻¹)

This map is calculated from the expression

$$H = 2 \left[H_1(\frac{3}{4} - \sigma) + H_3(\sigma - \frac{1}{4}) \right] 48$$

where H_1 and H_3 are the net temperature changes in the upper and lower layers, respectively, over a time interval $5\Delta t$ (the time interval over which the heating is calculated by means of the subroutine COMP 3). Here

$$H_1 = (\Delta T_1)_{CM} + (\Delta T_1)_{CP} + \left(\frac{A_1 + R_2 - R_0}{c_p} \frac{2g}{\pi} \frac{1}{48}\right)$$

$$H_3 = (\Delta T_3)_{CM} + (\Delta T_3)_{CP} + \frac{L}{c_p} PREC + \left(\frac{A_3 + R_4 - R_2 + F4}{c_p} \frac{2g}{\pi} \frac{1}{48} \right)$$

where (ΔT_1) and (ΔT_1) are the temperature changes (over $5\Delta t$) due to middle-level and penetrating convective heating in the upper layer, respectively [with (ΔT_3) and (ΔT_3) similarly defined for the lower layer], A_1 and A_3 are the net rates of short-wave radiant-energy absorption in the two layers, R_0 , R_2 , and R_4 are the upward long-wave radiative flux at each level, F4 is the upward flux of sensible heat from the surface, L is the latent heat of condenstion, and PREC is the large-scale condensation or precipitation rate. The factor $(2g/\pi)^{-1}$ represents the mass in each layer (per unit area), and the factor 48 (the number of times in a day the heating is calculated) converts to the desired units (see Chapter II, Sections F and G, and instructions 11410 to 11490, COMP 3, for further details).

For σ = 1/4 and σ = 3/4, this expression reduces to the net heat-induced temperature changes in the upper and lower layers, H_1 and H_3 , respectively. For other $0 \le \sigma \le 1$ it represents the assignment of the layer's temperature change to its midpoint, and the subsequent linear interpolation and extrapolation in σ (or p) space. This representation of the diabatic heating may also be generated for an arbitrary pressure, p, by replacing σ in the above expression by $(p - p_T)/\pi$.

Fig. 5.11 -- Total diabatic heating rate at 7 = 3/4. The dashed line is 0 and the isoline interval is 5 deg day-7.

Fig. 4.12. Large-Scale Precipitation Rate (Map 9) (mm day 1)

This map is calculated from the expression

PREC
$$(\frac{\pi}{2g})$$
 48 $\frac{10^2}{\rho_W}$

where the large-scale precipitation rate (PREC) is taken equal to the rate of generation of water vapor in excess of saturation (i.e., the condensation rate) in the lower layer, and is given by

PREC =
$$\begin{cases} [q_3 - q_s(T_3)](1 + \gamma_3)^{-1}, & q_3 > q_s(T_3) \\ 0 & , & \text{otherwise} \end{cases}$$

where q_3 is the water-vapor mixing ratio at level 3, $q_g(T_3)$ is the saturated mixing ratio at the ambient level-3 temperature T_3 (see Fig. 4.14), and the parameter $\gamma_3 = Lq_g(T_3)(c_pT_3^2)^{-1}$ 5418 deg, with L the latent heat of condensation and c_p the dry-air specific heat at constant pressure. The factor $\pi/2g$ represents the mass (per unit area) in the lower-layer air column ($\sigma=1$ to $\sigma=1/2$). The factor 48 (the ratio of 1 day to 54t) represents the umber of times per day the precipitation (PREC) is computed by means of the subroutine COMP 3. Together with the density of water, $\rho_w=1$ g cm⁻³, the factor 10^2 converts to the desired units. See Chapter II, Section F and instructions 8610 to 8690, COMP 3, for further details.

Fig. 6.12 -- Large-scale precipitation rate. The dashed line is 4 mm day. and the isoline interval is 2 mm day...

Fig. 4.13. Sigma Vertical Velocity (Map 10) (mb
$$hr^{-1}$$
)

This map is calculated from the expression

$$\pi \dot{\sigma} = \frac{\dot{S}}{2mn}$$

where $\dot{\sigma}=\dot{\sigma}_2=d\sigma/dt$ at level 2 and \dot{S} is a measure of the difference in horizontal mass convergence between levels 1 and 3, given by Eq. (2.34), Chapter II, as

$$\dot{S} = \frac{1}{2} \left[\left(\frac{\partial u_3^*}{\partial x} + \frac{\partial v_3^*}{\partial y} \right) - \left(\frac{\partial u_1^*}{\partial x} + \frac{\partial v_1^*}{\partial y} \right) \right]$$

where $u^{\frac{1}{8}} = n\pi u$ and $v^{\frac{1}{8}} = m\pi v$ are weighted mass fluxes at the levels 1 or 3, and n and m are the meridional distance (y) and zonal distance (x) between u,v grid points. The sigma vertical velocity may also be written $n\sigma = \omega - \sigma n$, where $\omega = dp/dt$ is the isobaric vertical velocity and $v^{\frac{1}{8}} = dp^{\frac{1}{8}}/dt$, with $p^{\frac{1}{8}}$ the surface pressure. See Chapter II for further details of $v^{\frac{1}{8}}$, representing an integration of the equation of continuity. See instructions 4130 to 4550, COMP 1, for further details.

Fig. 4.13 -- Sigma vertical velocity. The dashed line is 0 and the isoline interval is 10 mb hr-1.

Fig. 4.14. Relative Humidity (Map 11) (percent)

This map is calculated from the expression

$$q_3 10^2/q_s(T_3)$$

where q_3 is the water-vapor mixing ratio at level 3 and $q_8(T_3)$ is the saturation mixing ratio at the ambient level-3 air temperature T_3 . Here $q_8(T_3)$ is given by

$$q_s(T_3) = \frac{0.622 e_s(T_3)}{0.1p_3 - e_s(T_3)}$$

where p_3 is the (total) pressure at level 3, and the saturation vapor pressure $e_8^{(T_3)}$ is given by the semi-empirical formula

$$e_8(T_3) = 10 \exp(8.4051 - 2353 \deg/T_3)$$

Both p_3 and e_8 here are in the units cb (centibar = 10^{-2} bar = 10 mb). These relationships permit a supersaturation of a few percent in very moist air.

All of the atmospheric humidity is carried in the model at level 3 (i.e., $q_1 \equiv 0$), so that Map 11 is always for the level $\sigma = 3/4$.

Fig. ..i. -- Relative humidity at . = 3/4. The dashed line is 60 percent and the isoline interval is 20 percent.

Fig. 4.15. Precipitable Water (Map 12)

(cm)

This map is calculated from the expression

$$q_3(\frac{\pi}{2g}) \frac{10}{\rho_w}$$

where q_3 , the mixing ratio at level 3, is interpreted as the average mixing ratio between the surface (σ = 1) and level 2 (σ = 1/2), and where the density of water, ρ_w , is taken as 1 g cm⁻³, which together with the factor 10 serves to give the desired units. The factor $\pi/2g$ represents the mass (per unit area) in the lower half of the air column (σ = 1 to σ = 1/2), and results from the vertical integration of the water-vapor distribution.

-- Total precipitable water in column from = 1 to = 1/2. The dashed line is 1 cm and the isoline interval is I cm.

Fig. 4.16. Convective Precipitation Rate (Map 13) (mm day -1)

This map is calculated from the expression

$$\frac{(\Delta T_1)_{CM} + (\Delta T_1)_{CP} + (\Delta T_3)_{CM} + (\Delta T_3)_{CP}}{L/c_p} (\frac{1}{2}g) 48 \frac{10^2}{\rho_w}$$

where (ΔT_1) and (ΔT_1) are the temperature changes (over $5\Delta t$) due to middle-level and penetrating convective heat transport in the upper layer, respectively [with (ΔT_3) and (ΔT_3) similarly defined for the lower layer], L is the latent heat of condensation, c is the specific heat at constant pressure, $\rho_W = 1~{\rm g~cm}^{-3}$ is the density of water, the factor $\pi/2g$ represents the mass in each layer (per unit area), and the factor 48 (the number of $5\Delta t$ intervals in one day) together with the factor 10^2 serves to convert to the desired units. The quantity

$$\left[(\Delta^{T}_{1})_{CM} + (\Delta^{T}_{1})_{CP} + (\Delta^{T}_{3})_{CM} + (\Delta^{T}_{3})_{CP} \right] (L/c_{p})^{-1} = C1 + PC1 + C3 + PC3$$

in FORTRAN notation, and corresponds to the quantity PREC in Map 9 for the large-scale precipitation rate.

In the map shown on the right, the convective precipitation rate has a maximum of approximately 244 mm day⁻¹. This rate, however, lasts for a relatively short time, and, due to the nature of the computed convective heating, characteristically occurs at isolated grid points. See instructions 8700 to 8890, 9140 to 9390, COMP 3, and Chapter II, Subsection F.3, for further details.

Fig. .. 15 -- Convective precipitation rate. The dashed line is 100 mm day 1 and the isoline interval is 50 mm day 1.

This map is calculated from the expression

$$\frac{E4}{\rho_{w}} \cdot 10 \text{ DAY} = \frac{C_{D}^{\rho} 4}{\rho_{w}} \left(\left| \vec{v}_{s} \right|_{00}^{\pi} + 2.0 \text{ m sec}^{-1} \right) \left[\text{WET} \cdot q_{s} (T_{g}) + \text{WET} \cdot \frac{5418. \text{deg } q_{s} (T_{g})}{T_{g}^{2}} (TGR - T_{g}) - Q4 \right] 10^{3} \text{ DAY}$$

where E4 is the evaporation in g cm $^{-2}$ sec $^{-1}$, ρ_4 is the surface air density, $\rho_w = 1$ g cm $^{-3}$ the density of water, WET a (calculated) ground wetness parameter, $q_s(T_g)$ the saturated mixing ratio at the (computed) ground temperature T_g , TGR a (computed) ground temperature parameter including the effects of radiation, and Q4 a measure of the mixing ratio at level 4. The surface drag coefficient C_D is given by

$$C_{D} = \begin{cases} \min \left[\left(1.0 + 0.07 \middle| \overrightarrow{v}_{s} \middle|_{00}^{\pi} \right) 10^{-3}, 0.0025 \right], & \text{if ocean} \\ 0.002 + 0.006 \left(z_{4} \middle| 5000 \right) & \text{otherwise} \end{cases}$$

with z_4 the elevation of the surface. Here $|\vec{v}_s|_{00}^{\pi}$ is given in terms of the wind speeds at the four velocity points surrounding a pressure (or temperature) point by the expression (in π -centered notation)

$$\left|\vec{v}_{\mathbf{s}}\right|_{00}^{\pi} = \frac{1}{2} \left[\left|\vec{v}_{\mathbf{s}}\right|_{11}^{2} + \left|\vec{v}_{\mathbf{s}}\right|_{-11}^{2} + \left|\vec{v}_{\mathbf{s}}\right|_{-1-1}^{2} + \left|\vec{v}_{\mathbf{s}}\right|_{1-1}^{2} \right]^{\frac{1}{2}}$$

where $\vec{V}_s = 0.7 |\vec{V}_4|$ and $\vec{V}_4 = \frac{3}{2} |\vec{V}_3| - \frac{1}{2} |\vec{V}_1|$ (the wind extrapolated to level 4). The additive term 2.0 m sec⁻¹ is an empirical correction for gustiness, and the factors 10, 10^3 , and DAY (= 86,400) convert to the desired units.

The term Q4 is interpreted as the effective moisture just above the surface, and the terms in WET represent the effective surface moisture. The entire term in [] thus represents the vertical moisture gradient near the earth's surface. As shown in the map on the right, most of the evaporation occurs over the ocean [where the term (TGR - T_g) is zero], although the evaporation is occasionally negative elsewhere (representing condensation on the surface). See instructions 11220 to 11290, COMP 3, and Chapter II, Subsection F.6, for further details.

Fig. 4..7 -- Surface evaporation rate. The dashed line is 10 mm day-1 and the isoline interval is 5 mm day-:.

This map is calculated from the expression

$${}^{C}_{D}^{\rho}_{4}{}^{c}_{p} \left(\left| \vec{v}_{s} \right|_{00}^{\pi} + 2.0 \text{ m sec}^{-1} \right) \left(T_{g} - T_{4} \right) 10 \text{ DAY}$$

where ρ_4 is the surface air density, c_p the specific heat at constant pressure, T_g the (computed) ground temperature (or an assigned ice or ocean surface temperature), and T_4 is the air surface temperature. The surface drag coefficient C_D is given by

$$C_{D} = \begin{cases} \min \left[\left(1.0 + 0.07 |\vec{v}_{s}|_{00}^{\pi} \right) 10^{-3}, 0.0025 \right], & \text{if ocean} \\ 0.002 + 0.006 (z_{4}/5000 \text{ m}), & \text{otherwise} \end{cases}$$

with z_4 the elevation of the surface. Here $|\vec{V}_s|_{00}^{\pi}$ is given in terms of the wind speeds at the four velocity points surrounding a pressure (or temperature) point by the expression (in π -centered notation)

$$\left|\vec{v}_{s}\right|_{00}^{\pi} = \frac{1}{2} \left[\left|\vec{v}_{s}\right|_{11}^{2} + \left|\vec{v}_{s}\right|_{-11}^{2} + \left|\vec{v}_{s}\right|_{-1-1}^{2} + \left|\vec{v}_{s}\right|_{1-1}^{2} \right]^{\frac{1}{2}}$$

where $\vec{V}_s = 0.7 |\vec{V}_4|$ and $\vec{V}_4 = \frac{3}{2} \vec{V}_3 - \frac{1}{2} \vec{V}_1$ (the wind extrapolated to level 4). The additive term 2.0 m sec⁻¹ is an empirical correction for gustiness, and the factor 10 DAY (= $10 \times 86,400$) converts to the desired units. The sensible heat flux (F4 in the FORTRAN code) is positive when ground temperature is greater than surface air temperature ($T_g > T_4$), representing a heat flux from the ground to the air. As shown in the map on the right, however, this flux is often negative. See instructions 11220 to 11290, COMP 3, and Chapter II, Subsection G.3, for further details.

Fig. :.18 -- Surface sensible heat flux. The dashed line is 0 and the isoline interval is 100 ly day-1.

Fig. 4.18a. Lowest-Level Convection (Map 16) (deg)

This map is calculated from the expression

EX =
$$\begin{cases} h_4 - h_3^*, & \text{if } h_4 > h_3^* \text{ and } h_3 \le h_1^* \\ 0, & \text{otherwise} \end{cases}$$

where the static-energy parameters are given by

$$h_{1}^{*} = T_{1} + \frac{\phi_{1}}{c_{p}} + \frac{L}{c_{p}} q_{s}(T_{1})$$

$$h_{3} = T_{3} + \frac{\phi_{3}}{c_{p}} + \frac{L}{c_{p}} q_{3}$$

$$h_{3}^{*} = T_{3} + \frac{\phi_{3}}{c_{p}} + \frac{L}{c_{p}} q_{s}(T_{3})$$

$$h_{4} = T_{4} + \frac{L}{c_{p}} q_{4}$$

where ϕ = gz is the geopotential and q_s is the saturation mixing ratio. The condition $h_4 > h_3^*$ thus ensures instability between levels 4 and 3, while the condition $h_3 \le h_1^*$ ensures stability between levels 3 and 1 (i.e., there is no middle-level convection). Hence EX \ge 0, and represents the adjustment of the level-4 temperature due to convection. If $h_4 < h_1^*$ the computed value of EX is regarded as due to low-level convection, and is used to modify both the lowest-level temperature (T_4) and lowest-level heating (Q4). If $h_4 \ge h_1^*$ the computed value of EX is regarded as due to penetrating convection, and is used to modify not only T_4 and Q4 but the heating in the upper and lower layer as well. See Chapter II, Subsection F.3, and instructions 8700 to 9350, COMP 3, for further details.

Fig. 4.18a -- Lowest-level convection. The dashed line is 10.0 deg and the isoline interval is 2.0 deg.

Fig. 4.19. Long-Wave Heating in Layers (Map 19) (deg day -1)

This map is calculated from the expressions

$$(R2 - R0)(\frac{2g}{\pi})\frac{1}{c_p}$$
 if $0 \le \sigma < 0.5$

$$(R4 - R2)(\frac{2g}{\pi})\frac{1}{c_p}$$
 if $0.5 \le \sigma \le 1$

for an arbitrary σ surface, where RO, R2, R4 are the upward long-wave radiation fluxes at the levels σ = 0, 1/2, 1, respectively. The difference (R2 - R0) is thus the net long-wave radiation absorbed in the upper layer σ = 0 to σ = 1/2, and (R4 - R2) is the net long-wave radiation absorbed in the lower layer σ = 1/2 to σ = 1. Usually this heating is negative, representing a net long-wave cooling. The factor $(2g/\pi)^{-1}$ represents the air mass in either the upper or lower layer (per unit area), and c_p is the air's specific heat at constant pressure. Thus, depending upon whether σ < 1/2 or σ ≥ 1/2, either one of two versions of this map is produced. See Chapter II, Section G, and instructions 9750 to 10230, COMP 3, for further details.

Layer shown in map at right: upper layer.

Fig. 4.19 -- Long-wave radiative heating rate in upper layer ($\sigma = 0$ to $\sigma = 1/2$). The dashed line is -2.0 deg day⁻¹ and the isoline interval is 0.5 deg day⁻¹.

Fig. 4.20. Long-Wave Heating in Layers (Map 19) (deg day -1)

This map is calculated from the expressions

$$(R2 - R0)(\frac{2g}{\pi})\frac{1}{c_p}$$
 if $0 \le \sigma < 0.5$

$$(R4 - R2)(\frac{2g}{\pi})\frac{1}{c_p}$$
 if $0.5 \le \sigma \le 1$

for an arbitrary σ surface, where RO, R2, R4 are the upward long-wave radiation fluxes at the levels σ = 0, 1/2, 1, respectively. The difference (R2 - R0) is thus the net long-wave radiation absorbed in the upper layer σ = 0 to σ = 1/2, and (R4 - R2) is the net long-wave radiation absorbed in the lower layer σ = 1/2 to σ = 1. Usually this heating is negative, representing a net long-wave cooling. The factor $(2g/\pi)^{-1}$ represents the air mass in either the upper or lower layer (per unit area), and c_p is the air's specific heat at constant pressure. Thus, depending upon whether σ < 1/2 or σ ≥ 1/2, either one of two versions of this map is produced. See Chapter II, Section G, and instructions 9750 to 10230, COMP 3, for further details.

Layer shown in map at right: lower layer.

ICE IN CONTROL RUN

MAP

The dashed line Fig. 4.20 -- Long-wave radiative heating rate in lower layer ($\sigma = 1/2$ to $\sigma = 1$). is -2.0 deg day⁻¹ and the isoline interval is 0.5 deg day⁻¹.

Fig. 4.21. Short-Wave Absorption (Heating) in Layers (Map 20) (deg day -1)

This map is calculated from the expressions

$$A_{1}\left(\frac{2g}{\pi}\right) \frac{1}{c_{p}} \qquad \text{if} \qquad 0 \leq \sigma \leq 0.5$$

$$A_{3}\left(\frac{2g}{\pi}\right) \frac{1}{c_{p}} \qquad \text{if} \qquad 0.5 < \sigma \leq 1$$

if the cosine of the sun's zenith angle exceeds 0.01. These expressions are replaced by zero if the cosine of the sun's zenith angle is less than or equal to 0.01. Here \mathbf{A}_1 and \mathbf{A}_3 are the absorbed shortwave radiation in the upper layer (σ = 0 to σ = 1/2) and lower layer ($\sigma = 1/2$ to $\sigma = 1$), respectively, the factor $(2g/\pi)^{-1}$ represents the mass (per unit area) in each layer, and c_{p} is the specific heat at constant pressure. Thus, depending upon whether the arbitrary value of σ is $\leq 1/2$ or > 1/2, either one of two versions of this map is produced. The value of A₁ is the difference between the incoming solar radiation (that part subject to absorption) at the level σ = 0 and the downward short-wave flux at the level σ = 1/2. Similarly, A_3 is the difference between the downward fluxes at the levels $\sigma = 1/2$ and $\sigma = 1$. In either version, the short-wave absorption is always positive (or zero) and represents the net short-wave heating within the layers. See Chapter II, Section G, and instructions 10430 to 11010, COMP 3, for further details.

Layer shown in map at right: upper layer.

Fig. 4.21 -- Short-wave radiative heating rate in upper layer (σ = 0 to σ = 1/2). The dashed line is 2 deg day⁻¹ and the isoline interval is 0.5 deg day⁻¹.

Fig. 4.22. Short-Wave Absorption (Heating) in Layers (Map 20)

(deg day -1)

This map is calculated from the expressions

$$A_{1}\left(\frac{2g}{\pi}\right) \frac{1}{c_{p}} \qquad \text{if} \qquad 0 \leq \sigma \leq 0.5$$

$$A_{3}\left(\frac{2g}{\pi}\right) \frac{1}{c_{p}} \qquad \text{if} \qquad 0.5 < \sigma \leq 1$$

if the cosine of the sun's zenith angle exceeds 0.01. These expressions are replaced by zero if the cosine of the sun's zenith angle is less than or equal to 0.01. Here A_1 and A_3 are the absorbed shortwave radiation in the upper layer (σ = 0 to σ = 1/2) and lower layer ($\sigma = 1/2$ to $\sigma = 1$), respectively, the factor $(2g/\pi)^{-1}$ represents the mass (per unit area) in each layer, and $c_{
m p}$ is the specific heat at constant pressure. Thus, depending upon whether the arbitrary value of σ is $\leq 1/2$ or > 1/2, either one of two versions of this map is produced. The value of A₁ is the difference between the incoming solar radiation (that part subject to absorption) at the level σ = 0 and the downward short-wave flux at the level σ = 1/2. Similarly, A_3 is the difference between the downward fluxes at the levels σ = 1/2 and $\sigma = 1$. In either version, the short-wave absorption is always positive (or zero) and represents the net short-wave heating within the layers. See Chapter II, Section G, and instructions 10430 to 11010, COMP 3, for further details.

Layer shown in map at right: lower layer.

Fig. 4.22 -- Short-wave radiative heating rate in lower layer ($\sigma = 1/2$ to $\sigma = 1$). The dashed line is 2 deg day⁻¹ and the isoline interval is 0.5 deg day⁻¹.

Fig. 4.23. Surface Short-Wave Absorption (Map 22) (100 ly day⁻¹)

This map is calculated from the expression

S4/100

if the cosine of the sun's zenith angle is greater than 0.01, and is set equal to zero if the cosine of the sun's zenith angle is less than or equal to 0.01. Here S4 is the short-wave radiation absorbed at the surface (or level 4). The effects of surface albedo, atmospheric moisture, and cloudiness are taken into account. The surface short-wave heating is always positive (or zero), and represents the net absorption of insolation at the surface. See Chapter II, Section G, and instructions 10430 to 11010, COMP 3, for further details.

Fig. 4.23 -- Short-wave radiation absorbed at the surface. The dashed line is 1000 ly day-1 and the isoline interval is 200 ly day-1.

Fig. 4.24. Surface Air Temperature (Map 23)

(deg C)

This map is calculated from the expression

 T_{Δ} - 273.1 deg

where T_4 is the air temperature at the surface (level 4). Since T_4 , like other dependent temperature variables, is in deg K, this expression serves simply to convert the surface air temperature into the units deg C. The value of T_4 resembles the extrapolated value $\frac{3}{2}T_3 - \frac{1}{2}T_1$ (where T_3 and T_1 are the air temperatures at levels 3 and 1, respectively), but also incorporates the surface air temperature adjustments introduced by low-level convection and latent heating. See Chapter II, Section G, and instructions 8970 to 9130 in subroutine COMP 3 for further details.

Fig. 4.24 -- Surface air temperature. The dashed line is 0 deg C and the isoline interval is 5 deg C.

Fig. 4.25. Ground Temperature (Map 24)

(deg C)

This map is calculated from the ground-temperature (Tgr) dependence of the terms in the surface heat-balance equation, assuming the ground to be a perfect insulator of zero heat capacity:

$$R_4 + \Gamma + H_E - S_g = 0$$

Here the surface long-wave cooling R_4 is given by $\widetilde{R}_4 + \sigma(T_{gr}^4 - T_g^4)$, the surface sensible heat flux Γ by $C_{\Gamma}(T_{gr} - T_4)$, the latent heat flux from surface evaporation H_E by $C_{\Gamma}(q_{se} - q_4)L/c_p$, and S_g is the solar radiation absorbed at the surface. Here \widetilde{R}_4 is a preliminary determination of the surface long-wave cooling, and T_{gr} is a revised or improved value of the ground temperature T_g . For further details, see Chapter II, Subsection G.3.

Over ice- or snow-covered land and over sea ice, T_{gr} is not allowed to exceed T_{o} (= 273.1°K). Over sea ice this balance is altered to include a heat flux into the sea ice given by $-B(T_{gr} - T_{o})$, where B is an assumed ice conduction coefficient. Over open ocean the ground temperature T_{gr} is taken equal to the assigned sea-surface temperature T_{gr} = TG00 (see Fig. 3.14), and there is thus no ground-temperature correction to either the surface long-wave radiation ($R_{4} = R_{4}$) or to the surface saturated mixing ratio ($q_{ge} = q_{s}$).

The dashed line is 0 deg C and the isoline interval is 5 deg C. Fig. 4.25 -- Ground temperature.

Fig. 4.26. Ground Wetness (Map 25)

(dimensionless)

This map is calculated from the expression GW = 10 WET, where WET is assigned the value 1.0 (saturated) over ocean, ice, and snow surfaces, and is calculated over (bare) land surfaces according to

WET =
$$(GW)_{new} = (GW)_{old} + (1 - runoff)(\Delta q_3)_{TOTAL} \frac{1}{GWM} \frac{\pi}{2g}$$

in which the old or previous value of GW is altered according to the surface water balance. Here $(\Delta q_3) = (E-C)(2g/\pi)5\Delta t$ is the TOTAL total moisture change (over $5\Delta t$) including the effects of evaporation and both large-scale and convective condensation, and GWM is an assumed constant ground-water mass (= 30 g cm⁻²). The runoff factor varies between 0 and 1, and is taken as $0.5(GW)_{old}$ if $(GW)_{old} < 1$ (unsaturated surface), and as unity if $(GW)_{old} = 1$ (saturated), provided $(\Delta q_3)_{TOTAL}$ > 0 in either case. If $(\Delta q_3)_{TOTAL}$ < 0, representing an increase in level-3 moisture and a decrease of surface moisture, then the runoff is taken as zero. See Chapter II, Subsection F.5, for further details.

If $(GW)_{new}$ < 0 it is set to zero, and if $(GW)_{new}$ > 1 it is set to unity. The resulting wetness is then multiplied by 10 in order to scale the final GW from 0 to 10.

Fig. 4.26 -- Ground wetness, scaled 0 to 10. The dashed line is 6.0 and the isoline interval is 2.0.

Fig. 4.27. High Cloudiness (Map 26) (dimensionless)

This version of Map 26 is calculated from the expression

$$CL1 = min(-1.3 + 2.6RH_3, 1)$$

where RH_3 is the level-3 relative humidity (as in Map 11). If $CL \leq 0$ the sky is assumed to be clear and CL is reset to zero; otherwise CL1 is taken as the fraction of the sky covered with high or type-1 clouds. This cloudiness measure may be identified with towering cumulus between the levels 3 and 1, and is associated with either middle-level or penetrating convection. If there is no such convection, there is no type-1 or high cloudiness (CL1 = 0). For identification, this cloudiness is assigned the index $\sigma = 1/4$ in the map-generating program in Chapter VII. See Chapter II, Subsection F.6, for further details.

Fig. 4.27 -- High cloudiness, scaled ≤ 1 . The dashed line is 0.5 and the isoline interval is 0.3.

Fig. 4.28. Middle Cloudiness (Map 26) (dimensionless)

This version of Map 26 is calculated on the basis of CL2 = 1 if there is large-scale precipitation (and if there is no penetrating convection or high cloudiness, CL1 = 0). Under all other conditions CL2 = 0. Thus this measure of cloudiness is either 0 or 1 at all points. We may regard CL2 as the fraction of the sky covered by type-2 clouds, which are identified as heavy overcast between levels 3 and 2. For identification, this cloudiness is assigned the index $\sigma = 3/4$ in the map-generating program in Chapter VII. See Chapter II, Subsection F.6, for further details.

Fig. 4.28 -- Middle cloudiness, scaled 0 or 1. The dashed line is 0.5 and the isoline interval is 0.3.

Fig. 4.29. Low Cloudiness (Map 26) (dimensionless)

This version of Map 26 is calculated from the expression

$$CL3 = min(-1.3 + 2.6RH_3, 1)$$

where RH_3 is the level-3 relative humidity (as in Map 11). If $CL3 \le 0$ the sky is assumed to be clear and CL3 is reset to zero; otherwise CL3 is taken as the fraction of the sky covered with low or type-3 clouds. This cloudiness measure may be identified with shallow cumulus at level 3, and is associated with low-level convection. If there is no low-level convection, there is no low cloudiness (CL3 = 0); there is also no low cloudiness if there is any high cloudiness (as in Fig. 4.27). For identification, this cloudiness is assigned the index $\sigma = 1$ in the map-generating program in Chapter VII. See Chapter II, Subsection F.6, for further details.

Fig. 4.29 -- Low cloudiness, scaled ≤ 1. The dashed line is 0.5 and the isoline interval is 0.3.

Fig. 4.29a. Total Convective Heating in Layers (Map 28) (deg day -1)

This map is calculated from the expression

$$2\left\{ \left[(\Delta T_{1})_{CM} + (\Delta T_{1})_{CP} \right] (\frac{3}{4} - \sigma) + \left[(\Delta T_{3})_{CM} + (\Delta T_{3})_{CP} \right] (\sigma - \frac{1}{4}) \right\} 48$$

where (ΔT_1) and (ΔT_1) are the temperature changes (over $5\Delta t$) due to middle-level and penetrating convective heating, respectively, in the upper layer [with (ΔT_3) and (ΔT_3) similarly defined for the CM CP lower layer]. The factor 48 converts to the desired units, and the factor 2 represents $(\sigma_3 - \sigma_1)^{-1}$. For σ other than $\sigma_1 (= 1/4)$ and $\sigma_3 (= 3/4)$, this map thus generates the convective heating rate by linear interpolation and extrapolation in σ (or p) space. If a p surface is requested, σ in the above expression is replaced by $(p - p_T)/\pi$. See Chapter II, Section F, and instructions 11410 to 11490, COMP 3, for further details.

Layer shown in map at right: upper layer.

Fig. 4.29a -- Total convective heating in the upper layer (c = 0 to c = 1/2). The dashed line is 0 and the isoline interval is 0.2 deg day-1.

Fig. 4.29b. Total Convective Heating in Layers (Map 28) (deg day -1)

This map is calculated from the expression

$$2\left\{ \left[(\Delta T_{1})_{CM} + (\Delta T_{1})_{CP} \right] \left(\frac{3}{4} - \sigma \right) + \left[(\Delta T_{3})_{CM} + (\Delta T_{3})_{CP} \right] \left(\sigma - \frac{1}{4} \right) \right\} 48$$

where (ΔT_1) and (ΔT_1) are the temperature changes (over $5\Delta t$) due to middle-level and penetrating convective heating, respectively, in the upper layer [with (ΔT_3) and (ΔT_3) similarly defined for the CP lower layer]. The factor 48 converts to the desired units, and the factor 2 represents $(\sigma_3 - \sigma_1)^{-1}$. For σ other than σ_1 (= 1/4) and σ_3 (= 3/4), this map thus generates the convective heating rate by linear interpolation and extrapolation in σ (or p) space. If a p surface is requested, σ in the above expression is replaced by $(p-p_T)/\pi$. See Chapter II, Section F, and instructions 11410 to 11490, COMP 3, for further details.

Layer shown in map at right: lower layer.

Fig. 4.29b -- Total convective heating in the lower layer ($\sigma = 1/2$ to $\sigma = 1$). The dashed line is 0 and the isoline interval is 0.2 deg day⁻¹.

Fig. 4.29c. Latent Heating (Map 29) (deg day⁻¹)

This map is calculated from the expression

$$\frac{L}{c_p}$$
 (PREC) 48

where PREC is the large-scale condensation (or precipitation) rate (as in Map 9), L is the latent heat of condensation, and c is the air's specific heat at constant pressure. The factor 48 converts to the desired units. This latent heating applies to the lower layer only, as represented by level 3. See Chapter II, Subsection F.2, and instructions 8610 to 8690, COMP 3, for further details.

Fig. 4.29c -- Latent heating in the lower layer ($\sigma = 1/2$ to $\sigma = 1$). The dashed line is 1.0 deg day⁻¹ and the isoline interval is 0.5 deg day⁻¹.

Fig. 4.30. Surface Long-Wave Cooling (Map 30) (100 ly day⁻¹)

This map is calculated from the expression

R4/100

where R4 is the net upward long-wave radiation at the earth's surface. See Chapter II, Subsection G.2, and instructions 10430 to 11010, COMP 3, for further details.

Fig. 4.30 -- Long-wave radiative flux at the surface. The dashed line is 100 ly day⁻¹ and the isoline interval is 50 ly day⁻¹.

Fig. 4.31. Surface Heat Balance (Map 31) (100 ly day⁻¹)

This map is calculated from the expression

$$(S4 - R4 - F4)10^{-2} - (L\rho_w E4)10^{-3}$$

where S4 is the short-wave radiation absorbed at the surface (as in Map 22), R4 is the net upward long-wave radiation at the surface (as in Map 30), F4 is the upward sensible heat flux from the surface (as in Map 15), and E4 is the heat expended in evaporation from the surface (as in Map 14). Here L is the latent heat of evaporation, $\rho_{t,r}$ is the density of water, and the factors 10^{-2} and 10^{-3} serve to convert to the desired units. A positive balance indicates a net downward energy flux at the surface. Since the ground temperature over land (and ice) is itself determined from the condition of a zero surface heat balance, the small but nonzero values for the heat balance seen here over the continents are the result of the use of spatially averaged temperatures in those portions of the subroutine COMP 3 that have been incorporated into the program for Map 30 (see Map Program Listing, Chapter VII, Section B). This imbalance is here less than 10 ly/day, or approximately one percent of the separate heat-balance components. The relatively small heat flux through the ice at the (fixed) locations of ice-covered ocean has also been neglected in producing this map. See Chapter II, Subsection G.3, for further details.

Fig. 4.31 -- Total heat balance at the surface. The dashed line is 0 and the isoline interval is 200 ly day^{-1} .

2. Surface-Pressure Sequence

To illustrate the typical time behavior of the circulation simulated by the model, a 10-day sequence of the solution for sea-level pressure is presented in Fig. 4.32. These maps are from the same control experiment as those shown in Subsection A.1 above, and constitute a time series starting with Map 1 of Fig. 4.1. These maps show the sea-level pressure isolines at 5-mb intervals, with an additive 1000 mb understood. It is characteristic of the model's solutions that the sea-level pressure distribution maintains a synoptic-like structure as successive cyclone families are formed in the middle latitudes.

Fig. 4.32 -- Daily sequence of smoothed sea-level pressure. The dashed line is 1000 mb and the isoline interval is 5 mb (see Fig. 4.1).

Fig. 4.32 -- Continued.

DAY 404

Fig. 4.32 -- Continued.

DAY 406

Fig. 4.32 -- Continued.

DAY 408

DAY 409

Fig. 4.32 -- Continued.

V. PHYSICS DICTIONARY

PURPOSE

This list of terms permits easy entry into the model's physics and its numerical procedures without prior knowledge of specific mathematical or FORTRAN symbols. In this sense it complements the list of symbols and FORTRAN dictionary given in Chapter VIII. This list, of course, is by no means a complete one, but the authors have included those terms commonly associated with the numerical simulation of the general atmospheric circulation. For each term a brief description (and location) of its treatment in the model is given, together with any appropriate symbols, values, units, FORTRAN representations, and program locations.

LIST OF TERMS

Albedo

The albedo of the earth's surface, α_g (ALS), is assumed constant for two types of surface topography: 0.14 for bare land, 0.07 for ocean. The albedo of ice and of snow-covered land varies from about 0.40 to 0.90 and is dependent upon latitude and time of year (see instructions 10240 to 10410 in the FORTRAN listing), but does not depend in the present version upon the simulated circulation. The albedo of clouds, α_g (ALAC), used in the treatment of radiation varies between 0.6 and 0.7, depending upon the simulated clouds (see instructions 7620 to 7640 in the FORTRAN listing). The value of the albedo of the cloudless atmosphere for (Rayleigh) scattering, α_g (ALAO, instruction 10450), is a function of pressure and solar zenith angle, while for an overcast sky, α_{g} , it depends upon both α_g and α_g (see instructions 10650, 10750, 10880). See Chapter II, Section G, for further details.

Boundary Conditions

At the earth's surface (σ = 1) and at the assumed isobaric tropopause (σ = 0) the condition $\dot{\sigma}$ = $d\sigma/dt$ = 0 is imposed. This ensures no

motion th. .gh the surface $p = p_g$ at the ground (kinematic boundary condition), and no motion through the surface $p = p_T$ (free surface condition), where p_T (= 200 mb) is the assumed tropopause pressure. There are no lateral boundary conditions in the global model, although there are some computational adjustments at the poles (see Chapter III). Over a water surface (ocean or lake) the surface temperature is fixed at a climatological mean value, whereas over a snow or ice surface (sea ice or glacier) the surface ground temperature, although in general calculated by the model, is not allowed to warm above 0 deg C.

Clouds

Clouds are simulated in the model both through large-scale condensation and through convection. The degree of cloudiness affects the short-wave radiation by reflection (with an assumed cloud albedo) and by partial absorption within the cloud by means of a fictitious water-vapor amount u_c^* . The cloudiness also affects the long-wave radiation balance (see Chapter II and subroutine COMP 3, instructions 9400 to 10230 and 10540 to 11200). The cloudiness parameters CL1, CL2, and CL3 represent: (1) either penetrating or midlevel convection, (2) large-scale condensation, and (3) low-level convection, respectively. These are combined into the total or effective cloudiness measure CL, which is the fraction of sky assumed to be cloud-covered (0 \leq CL \leq 1). The measures CL1 and CL3 also depend upon the humidity at level 3. See Chapter II, Subsection F.4, for further details and Figs. 4.27 to 4.29, Chapter IV, for typical distributions.

Condensation

Large-scale condensation (PREC) occurs mainly as a result of the lifting of saturated air; the model's only atmospheric moisture, q_3 , is at the level σ = 3/4 and this is assumed representative of the average moisture in the layer σ = 1/2 to 1. Convective condensation (C1, C3, PC1, PC3) is parameterized in both the upper and lower levels, although moisture continues to be carried only at the level 3. Condensation (dew deposit) may also occasionally occur on the surface as

negative evaporation (E4). Since no cloud liquid-water content is carried, condensation is equivalent to precipitation in the model (see subroutine COMP 3, instructions 8620 to 8800, 9140 to 9360). See also Chapter II, Subsections F.2 and F.3, for further details; and Figs. 4.12 and 4.16, Chapter IV, for typical distributions.

Convection

Low-level convection is simulated under unstable conditions by altering the surface air temperature (level 4) by an amount necessary to restore the vertical lapse rate between levels 3 and 4 to a stable configuration. If the lapse rate between the surface and the upper level 1 is unstable, a penetrating convective heating is introduced in the heat budget of both the upper and lower layer, as well as at the surface, so as to restore stability. See Chapter II, Section F; and subroutine COMP 3, instructions 8700 to 8880, 8960 to 9390, for further details.

Convective Adjustment

As a result of advective temperature changes and diabatic heating at the levels 1 and 3, the vertical temperature lapse rate may become dry-adiabatically unstable. This is checked in a test for dry-adiabatic instability every 30 minutes, or every 5 time steps (before the heating), in subroutine COMP 3 (instructions 8180 to 8320), wherein the potential temperatures θ_1 and θ_3 are both set equal to the value $(T_1 + T_3)/(p_1^K + p_3^K)$, if prior to the adjustment $\theta_3 > \theta_1$. See Chapter II, Subsection F.1, for further details.

Coriolis Force

The Coriolis force (per unit mass), $f=2\Omega$ sin ϕ , is computed for each latitude by means of a finite-difference approximation to the equality $\sin \phi = -\frac{\partial \cos^2 \phi/\partial \phi}{2\cos \phi}$. This is performed in the subroutine MAGFAC (see instructions 14700 to 14750), wherein F(J) is the Coriolis parameter. See Chapter III, Subsection C.5, for further details.

Diffusion Coefficient

The coefficient of lateral eddy diffusion is set equal to zero in the present version of the model. However, provision has been made for including a diffusion of horizontal momentum in the subroutine COMP 4 (see instructions 12270 to 12680), with horizontal diffusion coefficients dependent upon the local mesh sizes.

Drag Coefficient

Over the oceans the drag coefficient C_D is a function of the surface wind speed, \vec{V}_s , and is given by $1.0 + 0.07 |\vec{V}_s| 10^{-3}$ or 0.0025, whichever is smaller. Over land (and ice or snow) C_D is given by $0.002 + 0.006(z_4/5000 \text{ m})$, where z_4 is the height of the surface. This is computed as CD in subroutine COMP 3 (see instructions 7910 to 7980). See Chapter III, Subsection C.10, for further details.

Evaporation

The surface evaporation rate, E, is locally computed every five time steps over both ocean and land as E4 in the subroutine COMP 3 (see instruction 11240). The evaporation is dependent upon the local surface wind speed and drag coefficient, the local surface air density and temperature, and the low-level vertical moisture gradient. The evaporation distribution is illustrated in Fig. 4.17, Chapter IV. See Chapter II, Subsection F.4, for further details.

Finite-Difference Grid

The present model's primary or π grid consists of points spaced 5 deg longitude and 4 deg latitude over the globe, and is illustrated by the symbol (o) in Fig. 3.2. At the set of such points including the poles (but not the equator) the variables π , T, ϕ , and q are determined, while at the set of points 4 deg latitude apart including the equator (but not the poles) and displaced eastward 2-1/2 deg longitude relative to the π grid, the horizontal speeds u and v are determined [the u, v grid, illustrated by the symbol (+) in Fig. 3.2]. The

complete grid therefore consists of 6552 distinct data points at each of two levels, with additional information stored for the π grid at the surface. For computational convenience additional subgrids are defined in Chapter III (see Fig. 3.2).

Friction

The internal frictional force arising from the vertical shear stress of the horizontal wind between levels 1 and 3 is written $\mu(\vec{V}_1 - \vec{V}_3)(z_1 - z_3)^{-1}(2g/\pi)$, where μ = 0.44 mb sec is an empirical shear-stress coefficient. This frictional force is applied with opposite signs in the equations of motion at levels 1 and 3. The frictional force at the earth's surface (which affects level 3 only) is written $C_D\rho_4\vec{V}_8(|\vec{V}_8|+G)(2g/\pi)$, where C_D is the drag coefficient, \vec{V}_S the (extrapolated) surface wind, and G=2.0 m sec⁻¹ an empirical correction for gustiness. These frictional forces are computed every fifth time step in subroutine COMP 3 (see instructions 11500 to 11620). See Chapter II, Section E, and Chapter III, Subsection C.10, for further details.

Geopotential

The geopotential, ϕ , of the sigma surfaces is used in the subroutine COMP 2 to compute a portion of the horizontal pressure gradient force (see instructions 5210 to 5700). The geopotential computation is based upon the assumption that the potential temperature is linear in p^K space; it is illustrated in Figs. 4.8 and 4.9, Chapter IV.

The geopotential of constant-pressure surfaces may also be calculated for interpretive purposes, as shown in Figs. 4.8a and 4.9a, Chapter IV.

Grid-Point Separation

The zonal (west/east) distance between grid points, $\Delta\lambda$, is equal to 5 deg longitude (FORTRAN symbol DLØN), for which the actual distance varies with latitude as given by the map metric m (FORTRAN symbols DXU, DXP, in Fig. 3.4). The meridional (south/north) distance between grid

points, $\Delta \phi$, is equal to 4 deg latitude (FORTRAN symbol DLAT), with the equivalent distance given by the map metric n (FORTRAN symbols DYU, DYP in Fig. 3.3). These variables are computed in the subroutine MAGFAC (see instructions 14360 to 14850). See Chapter III, Section B, for further details.

Ground Temperature

The temperature of the ground at the earth's surface (FORTRAN symbol TG) is computed in subroutine COMP 3 (instructions 11010 to 11200) as a function of the surface radiation balance (short-wave absorption minus net long-wave emission), evaporation, and vertical sensible heat flux. This is done under the assumption of no heat transfer into the ground (zero heat capacity for bare land, snow-covered land, or ice-covered land). Over an ice-covered ocean the surface temperature is computed as for bare land, except that heat flux through the ice is permitted. Ice- and snow-covered surfaces are not allowed to become warmer than 0 deg C. Over water surfaces the temperature is held at the assigned sea-surface temperature distribution (FORTRAN symbol TG00). See Chapter II, Section G, for further details; and Fig. 4.25, Chapter IV, for a typical distribution.

Ground Wetness

The degree of wetness of the ground surface is measured by a dimensionless parameter (FORTRAN symbols WET and GW) varying between 0 and 1. This is computed in subroutine COMP 3 (instructions 11280 to 11390) as a function of the surface-moisture budget (precipitation, evaporation, and runoff). Ice-, snow-, and water-covered surfaces have a ground-wetness parameter equal to 1 (saturation). See Chapter II, Subsection F.7, for further details; and Fig. 4.26, Chapter IV, for a typical distribution.

Heat Balance

A net heating or cooling may occur in either the upper or lower layers of the model from the absorption of short-wave (solar) radiation,

net long-wave radiation, the convective heating, and (in the lower layer only) through large-scale condensation and the surface flux of sensible heat. The sum of these effects may be termed the heat balance, which on the long-term average over the global domain should be approximately zero. At the earth's surface (over bare land or snow- or ice-covered land) a heat balance is assumed among the fluxes of short-and long-wave radiation, the upward sensible heat flux, and the latent heat used for surface evaporation. This balance is used to determine the ground temperature, and corresponds to a zero land heat capacity. A similar balance is assumed over ice-covered ocean surfaces, except that heat flux through the ice is permitted (snow and ice temperatures may not exceed 0 deg C). Over water surfaces there is no surface heat balance in the model because the water's surface temperature is fixed. The surface heat balance is illustrated in Fig. 4.31, Chapter IV. See Chapter II, Section G, for further details.

Heating

Diabatic heating occurs in the upper and lower layers of the model as a result of the radiation (both short— and long-wave) and the convective heating. In the lower layer there is also heating by large—scale condensation (PREC) and by the vertical (turbulent) flux of sensible heat (F4). These heat sources are computed every 5 time steps (= 30 min) in subroutine COMP 3 (instructions 11170 to 11310), and are used to change the temperature at levels 1 and 3. The total heating (in layers), surface sensible heat flux, long-wave heating (in layers), short—wave heating (in layers), surface short—wave absorption, and the surface long—wave cooling are illustrated in Figs. 4.10 and 4.11, 4.18, 4.19 and 4.20, 4.21 and 4.22, 4.23, and 4.30, respectively, of Chapter IV. See Chapter II, Section G, for further details.

Ice

The distribution of surface ice is prescribed in the present version of the model, and is shown in Figs. 3.13 and 3.14 for land ice and sea ice by the overprinted symbol I. The elevation of the land ice

is also shown in Fig. 3.13, while the sea ice is assumed to be at sea level. These ice locations are identified in the topography input deck (TOPOG) in subroutine INIT 2 by the values $\leq -10^5$, with the amount below -10^5 equal to the ice surface's elevation above sea level (in 10^2 ft). In the computation of the heat balance over sea ice, the ice is assumed to be 300 cm thick (HICE) and to have a thermal conductivity (CTI) = 0.005 ly cm sec⁻¹ deg⁻¹, and is not allowed to be warmer than 0 deg C (TICE). Except for its albedo (and not being allowed to warm above 0 deg C), land ice is treated in the same manner as bare land with GW = 1.

Long-Wave Radiation

The upward long-wave radiative flux is computed at the tropopause (RO), at the level 2 (R2), and at the ground (R4), taking into account the atmospheric emissivity, transmissivity, and the presence of clouds. This is performed every 5 time steps in subroutine COMP 3 (instructions 9750 to 10220, 11040 to 11200). The net fluxes R2 - RO and R4 - R2 contribute to the change of air temperature at levels 1 and 3, while the surface flux R4 contributes to the change of ground temperature and to the surface heat balance. These fields are illustrated in Figs. 4.19, 4.20, and 4.30 of Chapter IV. See Chapter II, Subsection G.2, for further details.

Low-Level Convection

The effect of relatively shallow or low-level convection on the surface temperature and moisture is parameterized in the model in terms of a generalized convection measure. There is no low-level convection unless the lapse rate is unstable between levels 3 and 4 (as measured by the temperature parameters HH4 and HH3S). In addition, the atmosphere must be stable between levels 1 and 3. Under these conditions the surface temperature (T4) and moisture (Q4) are adjusted to simulate low-level convective transports every 5 time steps in subroutine COMP 3 (see instructions 8700 to 8790, 9140 to 9350). See Chapter II, Section F, for further details.

Middle-Level Convection

This form of convection occurs if the atmosphere is unstable between levels 1 and 3, and alters the heat and moisture distribution at these levels. Midlevel clouds will be created if the level-3 relative humidity exceeds 50 percent. See subroutine COMP 3 (instructions 8810 to 8880) and Chapter II, Section F, for further details.

Moisture

The mixing ratio (Q3) is computed at the lower level 3 in the model at the points of the π grid in the subroutine COMP 1 (instructions 3520 to 3740), and the moisture sources and sinks due to evaporation and condensation are computed every 5 time steps in subroutine COMP 3 (instructions 8330 to 8450). The upper model level 1 is considered dry, and the moisture advections are such that total moisture is conserved in the absence of sources and sinks. The surface moisture balance is computed in subroutine COMP 3 (instructions 8540 to 8590, 8970 to 9120, 11280 to 11410), and includes the effects of evaporation (E4), precipitation (PREC), ground wetness (GW), and runoff. The moisture distribution is illustrated in the form of the relative humidity at level 3 in Fig. 4.14, Chapter IV, and the total precipitable water is illustrated in Fig. 4.15, Chapter IV. See Chapter II, Section F, and Chapter III, Subsection C.9, for further details.

Momentum Advection

The horizontal advection of momentum is computed in subroutine COMP 1 (instructions 3750 to 4120) in a way which ensures momentum conservation and the conservation of kinetic energy and the square of relative vorticity (in the absence of sources and sinks). This is accomplished by keeping track of the momentum fluxes (PU, PV, FLUXU, FLUXV) between neighboring u,v-grid cells, and with special adjustment near the poles. The vertical advection of momentum is also computed in subroutine COMP 1 (instructions 4690 to 4860), and represents a momentum exchange between levels 1 and 3 through the large-scale vertical velocity (SD). See Chapter III, Subsections C.3 and C.4, for further details.

Penetrating Convection

Like low-level convection, penetrating or deep convection is parameterized by a convection measure. For penetrating convection to occur, the atmosphere must be unstable between levels 3 and 4 and between levels 1 and 4, but stable between levels 1 and 3. Under these conditions the temperatures at levels 1 and 3 are changed to reflect the vertical convective heat transport (see subroutine COMP 3, instructions 8700 to 8790, 9140 to 9350) with the surface temperature (T4) and moisture (Q4) also changed every 5 time steps. This convection (PC1, PC3) also contributes to the precipitation, although it is assumed that no moisture is carried to the upper level 1. See Chapter II, Subsection F.3, for further details.

Potential Temperature

The potential temperature θ = $T(p_0/p)^{\kappa}$ (FORTRAN symbol TETA) is computed at various levels in the model for use in vertical stability tests and in the vertical interpolation in p^{κ} space for the temperature and geopotential heights at σ (or p) surfaces. Here p_0 = 1000 mb and κ = 0.286.

Precipitation

The large-scale precipitation rate (PREC) is computed every 5 time steps in the subroutine COMP 3 (instructions 8610 to 8690) as a result of the indicated supersaturation at level 3. The temperature at level 3 is also altered by the corresponding release of latent heat. An additional precipitation rate (CP) is due to middle-level and penetrative convective processes (C1, C3, PC1, PC3), which also result in the latent heating of the upper and lower layers (COMP 3, instructions 9140 to 9320, 11430 to 11480). The large-scale and convective precipitation rates are illustrated in Figs. 4.12 and 4.16, Chapter IV. See Chapter II, Subsections F.2 and F.3, for further details.

Pressure

The atmospheric pressure (PL) is computed at various levels in the model at the points of the π grid, and is widely used in the numerical integrations (see subroutine COMP 3, instructions 8020 to 8160). The pressure of the earth's surface, p_s , (FORTRAN symbol P4) is carried as a dependent variable through the parameter π (FORTRAN symbol P) = $p_s - p_T$, where $p_T = 200$ mb is the assumed tropopause pressure. The sea-level pressure (illustrated in Fig. 4.1, Chapter IV) is computed on the basis of an assumed lapse rate of 0.6 deg C/100 m between the surface and sea level. Other pressure parameters used are an average surface pressure (PSF = 984 mb), and a reference pressure (PSL = 1000 mb). The surface pressure tendency (FORTRAN symbol PT) is computed each time step in subroutine COMP 1 (instructions 4130 to 4540) as a result of the solution of the mass-continuity equation.

Pressure-Gradient Force

The pressure force terms in the equations of horizontal motion are calculated in subroutine COMP 2 (instructions 5210 to 6050) as a combination of the gradients of the geopotential, ϕ , and the surface-pressure parameter, π . These computations use finite differences centered at the velocity points and are performed each time step. See Chapter III, Subsection C.6, for further details.

Radiation

The net radiative flux of both long- and short-wave radiation is computed for the levels 0, 2, and 4 bounding the upper and lower layers of the model, as well as at the ground. These fluxes depend upon atmospheric moisture (in the lower layer), cloudiness, scattering, reflection (from both the earth's surface and from clouds), the solar zenith angle, and absorption, and are computed every 5 time steps in subroutine COMP 3 (instructions 9750 to 11000). The radiation contributes to the temperature change at levels 1 and 3, as well as to the change of surface temperature. See Chapter II, Section G, for further details.

Sea-Surface Temperature

The temperature at the sea surface is prescribed in the present version of the model. The data shown in Fig. 3.14, Chapter III, approximate the annual mean sea-surface temperature, and have been used in most applications of the model. Any net energy from the radiation exchange and the fluxes of latent and sensible heat at the ocean surface is absorbed by the sea without changing the surface temperature. The sea-surface temperature is read by subprogram INIT 2 (instructions 16020 to 16530) as part of the topography data (FORTRAN symbol TG00), and may be in either deg C or deg F (but not both).

Sensible Heat Flux

The (turbulent) flux of sensible heat at the earth's surface (FORTRAN symbol F4) is computed every 5 time steps in subroutine COMP 3 (instruction 11250) as a function of the surface wind speed and the low-level vertical temperature gradient (as measured by the difference between the ground, ocean, or ice temperature and the surface air temperature). This flux is illustrated in Fig. 4.18, Chapter IV, and is seen to be frequently negative, representing a sensible heat flux from the air to the ground. See Chapter II, Subsection G.3, for further details.

Short-Wave Radiation

The incoming short-wave or solar radiation is partitioned into a portion subject to scattering S_O^S and a portion subject to absorption S_O^A. The latter component may be absorbed in each of the two model layers, depending upon the moisture and cloudiness, and the net absorbed short-wave radiation (FORTRAN symbols AS1 and AS3) is determined every fifth time step in subroutine COMP 3 (instructions 10430 to 11000); this is part of the diabatic temperature change at levels 1 and 3, as illustrated in Map 20, Chapter IV. The short-wave radiation reaching the surface is partly reflected (depending upon the albedo), and partly absorbed. The net surface insolation absorbed (FORTRAN symbol S4) is illustrated in Fig. 4.23, Chapter IV, and

contributes to the surface heat balance. See Chapter II, Subsection G.1, for further details.

Smoothing

There is relatively little explicit smoothing in the present version of the model, although there is considerable averaging in the finite-difference formulations. The subroutine AVRX is used to perform an effective zonal averaging of certain quantities at higher latitudes in subroutines COMP 1 and COMP 2. There is also a 9-point spatial smoothing of the diabatic heating at levels 1 and 3 which is performed in subroutine COMP 3 (instructions 11850 to 12020), and a similar smoothing of the temperature lapse rate in subroutine COMP 4 (instructions 12700 to 12860). See Chapter III, Section D, for further smoothing details, and Subsection C.1 for a discussion of the subroutine AVRX.

Snow Cover

In the present version of the model the snow cover on the earth's surface is prescribed. In the northern hemisphere, all land surfaces (except ice-covered land) north of the latitude defined by the parameter SNØWN (see instruction 7460 in subroutine COMP 3) are assumed to be covered by snow. The southern boundary of this snow line averages at 60 deg N but varies in time with a period of one year and with an amplitude of 15 deg latitude, with maximum extent on January 25. In the southern hemisphere, a constant snowline SNØWS (see instruction 7470 in subroutine COMP 3) prescribes snow-covered land south of 60 deg S, but this is overridden in the model's present version, because all points south of 60 deg S are either ocean, sea ice, or land ice.

Solar Constant

The value of the solar constant is taken to be 2 ly \min^{-1} = 2880 ly day⁻¹. This value is modified in subroutine COMP 3 (instruction 7610) to take account of the seasonal variation of the earth/sun

distance in the calculation of the FORTRAN variable SO (see instruction 15520 in subroutine SDET).

Temperature

The air temperature (T) is computed each time step in the model for levels 1 and 3 at the points of the m grid, and is widely used in the numerical integration (see instructions 8180 to 8310, subroutine COMP 3). A number of interpolations and extrapolations are made in p^K space for the temperatures and potential temperatures for use in the radiation and convection calculations. The surface air temperature (T4) is computed as a result of the surface heat and moisture balance (instructions 8960 to 9120, 9340, subroutine COMP 3), while the ground temperature itself (TG) is separately computed. The temperature at levels 1 and 3 is illustrated in Figs. 4.6 and 4.7, Chapter IV, and the surface air temperature is illustrated in Fig. 4.24, Chapter IV.

Time

Time is measured with respect to hour 0 for midnight at the Greenwich meridian (0 deg longitude), with day 400 corresponding to the 28 January declination of the sun.

Time Step

In the main integration of the model, the time step Δt is 6 minutes. The friction, heating, evaporation, and condensation source terms, however, are computed only every fifth time step (every 30 minutes) in the subroutine COMP 3. In each step of the 5-step sequence, a preliminary estimate of the new values of the dependent variables is first obtained, then followed by a final estimate in a modified backward-difference scheme. See Chapter III, Section A, for further details, and subroutine STEP (instructions 1850 to 2280). Once each day the total global mass is adjusted in subroutine GMP, and the solar declination and earth/sun distance are recalculated. In the present

version of the model, the output or history tape of the primary dependent variables is written every 6 hours.

Topography

The topography (TG00) of the earth's surface is prescribed as either water (with a fixed surface temperature), ice (with a maximum temperature of 0 deg C), or land (which may be snow-covered, depending upon the latitude and time of year). The elevation of all land points is prescribed (whether ice-covered, snow-covered, or bare), and is shown in Fig. 3.13, Chapter III; the assigned sea-surface and lake temperatures and ice locations are shown in Fig. 3.14, Chapter III. The topography is read into the program by the subroutine INIT 2, and the land elevation data is decoded in subroutine VPHI4.

Transmission Function

The transmission function for short-wave radiation (FORTRAN symbol TRSW; see subroutine COMP 3, instructions 10460 to 11000) is given by the empirical expression $1-0.271(x)^{0.303}$, where (x) is the effective water vapor concentration in a vertical atmospheric column (see subroutine COMP 3, instructions 9750 to 10230). The transmission function for long-wave radiation (FORTRAN symbol TRANS; see subroutine COMP 3, instructions 9910 to 10220) is given by the expression $[1+1.75(x)^{0.416}]^{-1}$. See Chapter II, Section G, for further details.

Tropopause

The tropopause in the model is assumed to be always at the pressure $p_T = 200 \text{ mb}$ (FORTRAN symbol PTR\$P), and is used in the definition of the tropospheric σ -coordinate system. At this level the boundary condition $\dot{\sigma} = 0$ is applied.

Vertical Velocity

The σ -vertical velocity $\pi \dot{\sigma} = \dot{S}/2mn$ (FORTRAN symbol SD = \dot{S}) is computed in the model for the middle level 2 from the equation of

continuity as a result of the net horizontal mass convergence (see subroutine COMP 1, instructions 4320 to 4540). The vertical velocity is used to effect the vertical advection of momentum and temperature, and to determine the large-scale precipitation rate; it is illustrated in Fig. 4.13, Chapter IV. See Chapter III, Subsections C.1, C.2, and C.8, for further details.

Wind Velocity

The horizontal zonal and meridional wind speeds (FORTRAN symbols U and V) are computed each time step in the model at the points of the u,v grid, and are widely used in the program. These fields are illustrated in Figs. 4.2 to 4.5 in Chapter IV. In the subroutine COMF 1 a number of spatially averaged speeds and fluxes are defined for use in the horizontal advections of momentum, mass, heat, and moisture. The wind velocity at the earth's surface (US, VS) is found by linear extrapolation in p from levels 1 and 3 (see subroutine COMP 3, instructions 7490 to 7570), and is used in the determination of the surface friction, evaporation, and sensible heat flux. See Chapter III, Section C, for further details.

VI. LIST OF SYMBOLS

PURPOSE

In order to provide a complement to the physics dictionary presented in Chapter V, a comprehensive alphabetical listing and identification of all the symbols used in the discussion of the model's physics and numerics is given here. For each symbol a brief identification, typical value, units, and FORTRAN symbol (if any) is given. Those symbols which occur at more than one level in the model (as designated by the subscripts 1, 2, 3, or 4) are listed following the primary variable. Not separately listed are those symbols which occur with the superscripts τ or n (denoting evaluation at time steps), those symbols which occur with the subscripts i and/or j, those symbols with various combinations of numerical subscripts (denoting grid-point locations), or those symbols representing a local specialization of a previously defined symbol. In general, symbols which occur only in FORTRAN notation are also not listed here (see Chapter VIII).

SYMBOL ¹	MEANING	UNITS (and value for constants)	FORTRAI SYMBOL
α α ₁ α ₃	specific volume	cm ³ g ⁻¹	
α ac	albedo of cloudy atmosphere		ALAC
a _c	cloud albedo (subscripted by cloud type)		ALC1 ALC2 ALC3
αg	albedo of earth's surface		ALS
α _o	albedo of clear atmosphere		ALA0
В	vertical shear stress parameter	0.13 mb ² sec m ⁻¹	
r	surface sensible heat flux	ly day-1	F4
Г _h	surface flux of static energy	ly sec ⁻¹	
Υ	temperature lapse rate near surface	0.6 deg/100 m	
Υ 1 Υ 3 Υ g	latent heating parameter = Lq _s (c _p T ²) ⁻¹ 5418 deg		GAM
ζ	sun's zenith angle	radians	CØSZ (= cos ζ)
η	entrainment factor		ETA
$\left. egin{array}{c} \theta \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{array} \right\}$	potential temperature	deg K	TETA

The multiple listing is for symbols occurring with the subscripts 1, 2, 3, or 4; these denote evaluation at the respective model levels $\sigma = 1/4$, 1/2, 3/4, or 1 (surface). The subscripts g and o also sometimes denote the ground or surface level.

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAI SYMBOL
<u> </u>	an average potential temperature	deg K	
ď	partial potential temperature	deg K	
$\theta_{\mathbf{E}}$	equivalent potential temperature	deg K	
ĸ	thermodynamic ratio R/c	0.286	KAPA
λ	longitude, positive eastward from Greenwich	radians	
Δλ	longitudinal spacing between grid points	π/36 radians (= 5 deg)	DLØN
μ	vertical shear stress parameter	0.44 mb sec	
П	pressure area weighting = πmn	m ² mb	FD(J,1)
пч	local four-point average of II centered on u,v grid points	m ² mb	FDU(J,I)
π	(1) surface pressure parameter = p - p _T	mb	SP,P(J,I)
	(2) constant	3.14159	PI
π	surface pressure change = $\frac{dp_s}{dt}$	mb sec ⁻¹	PT
πs	standard value of π	800 mb	PM
π ^u	local four-point average of m centered on u,v grid points	mb	
P	air density	g cm ⁻³	RHØ, RØ4

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
P _W	water density	1 g cm ⁻³	
σ	Stefan-Boltzman constant	1.171×10^{-7} ly day $^{-1}$ deg $^{-4}$	STBØ
$\begin{pmatrix} \sigma \\ \sigma_1 \\ \sigma_3 \end{pmatrix}$	vertical coordinate = (p - p _T)/(p _s - p _T)		SIG
ά ;	sigma vertical velocity = do/dt	sec ⁻¹	SD
τ	time-step index	-	TAU
$\begin{bmatrix} \tau \\ \tau_1 \\ \tau_2 \end{bmatrix}$	intermediate variables in penetrating convection	deg K	темр
^τ r	relaxation time for cumulus convection	3600 sec	TCNV
τ (u *)	long-wave transmission function $= [1 + 1.75(u^*)^{0.416}]^{-1}$		TRANS (X)
$\begin{bmatrix} \overline{\tau}_{\mathbf{A}} \\ \overline{\tau}_{\mathbf{B}} \end{bmatrix}$	long-wave transmission above and below a given level		=-
φ ₁ φ ₃	geopotential of sigma surface	m ² sec ⁻²	РНІ
Φ4	geopotential of $\sigma = 4$ surface	m ² sec ⁻²	VPHI4

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
φ	latitude, positive northward from equator	radians	LAT(J)
Δφ	latitudinal spacing between grid points	π/45 radians (= 4 deg)	DLAT
ψ	arbitrary variable		
Ω	earth's rotation rate	2π radians/day	RØT
ω	pressure vertical velocity = dp/dt		
A	absorbed short-wave radiation	ly day-1	
^A ₁)	absorbed short-wave radiation in upper and lower layers	ly day ⁻¹	AS1, AS3
$^{\mathtt{A}}\mathbf{v}$	eddy diffusion coefficient	m ² sec ⁻¹	
Ä	arbitrary vector, whose latitudinal and longitudinal components are \mathbf{A}_{ϕ} and \mathbf{A}_{λ}		
^A e	saturation vapor pressure constant	21.656	
(u*,z)	short-wave absorption function = 0.271(u cos ζ) ^{0.303}		TRSW(X)
$\mathbf{A}_{\dot{\boldsymbol{\psi}}}$	general representation for advection terms		
a	earth's radius	$6.3750 \times 10^6 \text{ m}$	RAD
В	conduction coefficient for ice	ly day -1 deg -1	<u></u>
B	generalized conduction coefficient	ly day -1 deg -1	TEM
Be	saturation vapor pressure constant	5418 deg	
С	condensation rate	g cm sec	

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
$\mathbf{c_i}$	ground temperature correction terms in long-wave radiation	ly day-1	
c	surface drag coefficient		CD
c_{Γ}	sensible and latent heat flux parameter	ly day ldeg -1	CSEN
CL	cloudiness measure		CL
CLAT	degrees poleward of snowline	deg latitude	CLAT
CONV	horizontal mass convergence	m ² mb sec ⁻¹	CØNV
c _p	dry air specific heat at constant pressure	0.24 cal g ⁻¹ deg	
D _ψ	general representation for non- source terms		
Dπ	general representation for mass advection terms		
E	surface evaporation rate	g cm ⁻² sec ⁻¹	E4
es	saturation vapor pressure	cb	ES, EG
F	modified Coriolis parameter = mnf - udm/dy	m ² sec ⁻¹	FD(J,I)
Ŧ	horizontal vector frictional force (per unit mass)		
F*			
F ₁ F ₃	eastward component of frictional force		
Fy Fy Fy 3	northward component of frictional force		

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
F ₄	upward sensible heat flux from surface	ly day-1	F4
F _H	vertical heat flux at surface	ly day-1	-
f	Coriolis parameter = $2\Omega \sin \varphi$	sec ⁻¹	F(J)
G	gustiness correction for surface wind	2 m sec ⁻¹	G
GW	ground wetness		GW
GWM	maximum ground water	30 g cm ⁻²	GWM
g	gravity	9.81 m sec ⁻²	GRAV
h/c _p	static energy	deg K	
h ₃ /c _p	static energy at level 3	deg K	ннз
h ₄ /c _p	static energy at level 4	deg K	{ HH4 HH4P
ĥ ₄ /c _p	intermediate stability parameter	deg K	нн4
Ĥ	diabatic heating rate (per unit mass)	cal g ⁻¹ sec ⁻¹	
н ₁	diabatic temperature change (over 5Δt) in layer	deg	н1
Н3	diabatic temperature change (over $5\Delta t$) in layer	deg	нз
Ħ	average of H ₁ , H ₃	deg	н
HE	surface latent heat flux	ly day ⁻¹	

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
h*/cp	stability parameter	deg K	
h ₁ */c _p	stability parameter at level 1	deg K	нніѕ
h ₃ /c _p	stability parameter at level 3	deg K	нн3ѕ
I	maximum value of i	72	IM
1	zonal grid-point index		ı
J	maximum value of j	46	ЈМ
į	meridional grid-point index		J
K	moisture parameter		VAK
ķ	vertical unit vector		
L	latent heat of condensation	580 cal g ⁻¹	
L	level index = 1 at σ_1 , = 3 at σ_3		L
LR	nominal lapse rate $= (\theta_1 - \theta_3)(p_2/p_0)^{\kappa}$	deg K	
M) Mb (vertical mass flux in cloud	g cm ⁻² sec ⁻¹	
Mw/Md	ratio of the molecular weight of water vapor to dry air	0.622	
m	map metric or zonal distance between grid points = aΔλ cos φ	m	DXU
n	<pre>(1) map metric or meridional distance between grid points = aΔφ</pre>	m	DYU DYP
	(2) arbitrary time step		

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAI SYMBOL
р	(1) pressure		
P_1	\rangle	mb	PL
P ₃	(2) polar grid-point index		
P _o	reference pressure	1000 mb	PSL
PCM	precipitation rate from middle-level convection	mm day-1	
PCP	precipitation rate from penetrating convection	mm day -1	
PLS	large-scale precipitation rate	mm day-1	
Ps	surface pressure	mb	P4
$^{ m p}_{ m T}$	tropopause pressure	200 mb	PTRØP
$\frac{\Delta \mathbf{p}_{\mathbf{c}}}{\Delta \mathbf{p}_{\mathbf{m}}}$	cloud pressure thickness	mb	
ģ	rate of moisture addition (per unit mass)		
P	mixing ratio		
^q 3	mixing ratio at level 3		Q3 Q3R Q3RB
q ₄	mixing ratio at level 4		Q4
q g	mixing ratio at ground		QG
Δq3	mixing ratio change (at level 3)		

SYMBOL	MEAN ING	UNITS (and value for constants)	FORTRAN SYMBOL
qs	saturated mixing ratio		QS
q _{se}	effective ground saturation mixing ratio		
R	dry air specific gas constant	287 m ² deg ⁻¹ sec ⁻²	RGAS
\mathtt{R}_{ψ}	general representation for non-advective, non-source terms = $D_{\psi} - A_{\psi}$		
R'n	clear sky long-wave radiation at level n	ly day ⁻¹	R00 R20 R40
R"	overcast sky long-wave radiation at level n	ly day ⁻¹	ROC R2C R4C
$\tilde{\tilde{R}}_n$	weighted sum of R_n' , R_n''	ly day-1	R0 R2 R4
RO (upward long-wave radiation flux at level 0(σ = 0)	ly day-1	RO
R2) R ₂)	upward long-wave radiation flux at level 2	ly day-1	R2
R4)	upward long-wave radiation flux at level 4 (surface)	ly day ⁻¹	R4
RH ₃ (RH ₄)	relative humidity (scaled 0 to 1)		RH
S	dry static energy	cal g	1
ŝ	vertical velocity measure = 2mmπ ^o 2	m mb sec 1	SD(J,I)

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
$\left(s_{i}^{A}\right)'$	flux of So at level i in clear sky	ly day-1	
$\left(s_{\mathtt{i}}^{\mathtt{A}}\right)$	flux of SA at level i in overcast sky	ly day ⁻¹	
$\left(S_{cT_{1}}^{A}\right)^{"}$	flux of S ^A _o reflected from top of cloud type i	ly day ⁻¹	
\$ ^u	local four-point average of S centered on u,v grid points	m ² mb sec ⁻¹	SDU
So	solar constant (after modification for earth-sun distance)	~2880 ly day-1	SØ
So	solar radiation subject to scattering	ly day-1	ss
SAO	solar radiation subject to absorption	ly day ⁻¹	SA
Sg	total solar radiation absorbed at ground	ly day ⁻¹	S4
ន ^{ទី}	flux of S absorbed by ground	ly day-1	
s ^A g	flux of So absorbed by ground	ly day-1	
s_{ψ}	general representation for source terms		
s ₄	short-wave radiation absorbed at the surface	ly day ⁻¹	S4
T ₁	temperature	deg K	T

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAI SYMBOL
To	melting point of ice	273.1 deg K	TICE
T _O	tropopause temperature	deg K	TTRØP
T4)	air temperature at level 4 (surface)	deg K	т4
T _{c1}	air temperature in cloud	deg K	
ΔT_1	temperature change (of layer)	deg	
(ΔΤ ₁) (ΔΤ ₃) CM	temperature change due to middle- level convection	deg	
(ΔT ₁) CP	temperature change due to penetrating convection	deg	
(AT ₃)	level-3 temperature change due to large-scale condensation (= PREC·L/c _p)	deg	
Tg	ground temperature	deg K	TG GT(J,I)
Tgr	revised ground temperature	deg K	JTGR GT(J,I)
T _T	tropopause temperature	deg K	TTRØP
Tu	local four-point average temperature centered on u,v-grid points	deg K	
Ŧ	an average temperature	deg K	

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
TD	lapse rate measure = $(T_3 - T_1)/2\pi$	deg mb ⁻¹	TD
t	time	sec, min, hr, or days	
Δt	time step	6 min	DTM
บ	west/east advective flux	m ² mb sec ⁻¹	
ũ	southwest/northeast advective flux	m ² mb sec ⁻¹	
u ₁ u ₃ u ₄	zonal (eastward) wind speed	m sec ⁻¹	ט
u* } u* }	effective water vapor content in column (to level n)	g cm ⁻²	EFV EFVT
u _∞ *	effective water vapor content in column (entire atmosphere)	g cm ⁻²	EFV0
u* u1 u3 u4	zonal mass flux = nπu	m ² mb sec ⁻¹	PU(J,1)
uc ₁ vc ₂	cloud water vapor equivalent	65.3 g cm ⁻²	FFVC1

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
u* c ₃	cloud water vapor equivalent	7.6 g cm ⁻²	EFVC3
V	south/north advective flux	m ² mb sec ⁻¹	
ữ	southeast/northwest advective flux	m ² mb sec ⁻¹	
\vec{v} \vec{v}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4	horizontal velocity vector	m sec ⁻¹	
\vec{v}_s	surface wind vector, = $0.7\vec{v}_4$	m sec ⁻¹	us, vs
$\begin{vmatrix} \vec{\mathbf{v}}_{\mathbf{s}} \end{vmatrix}^{\Pi}$	local four-point root-mean-square surface wind speed centered at π points	m sec ⁻¹	WMAG
v v ₁ v ₃	meridional (northward) wind speed	m sec ⁻¹	v
v ₁ v ₃ v ₄	meridional mass flux = mπv	m ² mb sec ⁻¹	PV(J,I)
W	surface wind speed with gustiness correction	m sec ⁻¹	WINDF

SYMBOL	MEANING	UNITS (and value for constants)	FORTRAN SYMBOL
x	eastward coordinate (on rectangular projection)		
y	northward coordinate (on rectangular projection)		
z z 1 z 3 z 4	height of sigma surface	m	ZZZ
Δz	standard value of z ₁ - z ₃	5400 m	
([^])	designation for preliminary estimate in time integration		-
(~)	designation for provisional value prior to incorporation of source terms in time integration		
Ō	a smoothing operator denoting a horizontally averaged value		
No	an operator denoting the three- point longitudinal smoothing routine in AVRX(K), which is automatically applied No times		-

VII. THE FORTRAN PROGRAM

A listing of the computer program actually used in the numerical simulations is perhaps the most important part of the documentation. In the FORTRAN program listing given in Section A below the sequential numbering of all cards in the program deck is reproduced on the right-hand side of the listing to permit easy identification of specific instructions. Following the listing of the integration program and the common block, the program listing for the map routines is presented in Section B with a separate instruction card numbering.

A. INTEGRATION PROGRAM LISTING

1. Subprograms

The integration program itself is divided into a main or control routine and a number of subroutines. In the order of their appearance in the program, these subroutines (and an indication of their functions and initial program instruction numbers) follow:

- COMMON -- lists variables' common and equivalence assignments
- CONTROL -- controls program execution (0120)
- OUTAPE -- reads and writes history tape (0800)
 - GMP -- calculates global average surface pressure, and adjusts pressure for mass conservation (1250)
 - VPHI4 -- decodes land elevation (1510)
 - IPK -- packs data for output (1610)
 - KEY -- logical key control (17/0)
 - STEP -- controls sequence of time steps, and readies data for execution of subroutines COMP 1, COMP 2, COMP 3, and COMP 4 (1850)
- COMP 1 -- calculates mass flux and convergence; horizontal advection of momentum, heat, and moisture; vertical advection of momentum and heat (2290)
- COMP 2 -- calculates Coriolis and pressure-gradient forces (4880)
 - AVRX -- performs zonal smoothing (6780)
- COMP 3 -- calculates radiative heating, convection, precipitation, surface and ground temperature, surface evaporation and sensible heat flux, surface friction; calculates selected data for output (7070)

- COMP 4 -- calculates diffusion of momentum (suppressed in the present version); performs areal smoothing of the temperature lapse rate (12040)
- INPUT -- reads input data and controls generation of selected constants (12880)
- MAGFAC -- calculates map scale factors and Coriolis parameter (14350)
- INSDET -- adjusts day, month, and seasonal sun position
- SDET -- calculates solar zenith angle and related parameters (15190)
- INIT 1 -- prepares for cold-start initial conditions (inoperative in the present version) (15620)
- INIT 2 -- reads and encodes surface topography data (sea-surface temperature and land elevation) (15770)

2. Guide to the Main Computational Subroutines

The bulk of the computations involved in the solution of the main dynamical equations of the model, Eqs. (2.27) to (2.35), are performed in the subroutines COMP 1, COMP 2, COMP 3, and COMP 4. An outline of these calculations is given below in the sequence performed each time step in the program by the subroutines COMP 1 and COMP 2, followed by an outline for subroutines COMP 3 and COMP 4 which are performed every five time steps. The initial instruction location is cited for each major program subdivision.

Calculation	Initial Instruction
COMP 1	·
Formation of area-pressure-weighted variables	2540
Horizontal mass flux	2710
Zonal smoothing (AVRX)	2830
Horizontal polar mass flux	2970
Horizontal temperature advection	3260
Horizontal moisture advection	3390
Horizontal mamentum advection	
Continuity equation (vertical velocity and	3770
surface pressure tendency)	4130

Calculation	Initial Instruction
COMP 1	
Vertical temperature advection	4560
Vertical momentum advection	4690
COMP 2	
Coriolis force	5010
Pressure-gradient force	5220
Zonal smoothing (AVRX)	5970
Thermodynamic energy conversion	6070
Zonal smoothing (AVRX)	6210
Polar adjustment	6410
Return to unweighted variables	6580
COMP 3	
Radiation and heating functions	7150
Surface wind magnitude	7490
Radiation constants	7590
Solar declination	7740
Surface topography (ocean, ice, bare land, snow-covered land)	7820
Pressure variables	8030
Temperature and moisture variables, and test for dry-adiabatic instability	8180
Ground temperature and wetness	8540
Large-scale precipitation	8610
Middle-level convection	8700
Preparation for air/earth interaction	8900
Surface temperature	8970
Penetrating and low-level convection	9140
Cloudiness	9400
Long-wave radiation	9750
Surface albedo	10240

Calculation	Initial Instruction
COMP 3	
Solar (short-wave) radiation	10430
Ground temperature	11020
Sensible heat flux and evaporation	11220
Moisture budget	11300
Total heating	11410
Surface friction	11500
Areal smoothing of heating	11850
OMP 4	
Horizontal momentum diffusion (inoperative in present version)	
	12270
Areal smoothing of lapse rate	12700

3. Common and Equivalence Statements

Most of the variables and constants of the program are communicated between the subprograms via a common block, stored in the single array BCØMN. The following equivalents should be noted:

BCØMN(1) --BCØMN(800) equivalent to C(1)--C(800)

where C(K) is defined to be equivalent to all the constants and one-dimensional arrays [and MAPLST(3, 40)],

BCØMN(801)--BCØMN(67040) equivalent to QTØT(1,1,1)--QTØT(46,72,20)

where QTØT is equivalent to all the two- and three-dimensional arrays,

QTØT(1,1,1)--QTØT(46,72,9) equivalent to Q(1,1,1)--Q(46,72,9)
QTØT(1,1,10)--QTØT(46,72,20) equivalent to QT(1,1,1)--QT(46,72,11)

and

Q(J,I,1) equiv	valent to P(J,I)	surface pressure (π)
	valent to U(J,I,1)	level 1 zonal wind (u ₁)
Q(J,1,3) equi	valent to U(J,I,2)	level 3 zonal wind (u3)
Q(J,I,4) equiv	valent to V(J,I,1)	level 1 meridional wind (v_1)
Q(J,I,5) equiv	valent to V(J,I,2)	level 3 meridional wind (v_3)
Q(J,I,6) equiv	valent to T(J,I,1)	level 1 temperature (T1)
Q(J,I,7) equiv	valent to T(J,I,2)	level 3 temperature (T ₃)
Q(J,I,8) equiv	valent to Q3(J,I)	moisture (q ₃)
Q(J,I,9) equiv	valent to TØPØG(J,I)	surface elevation and ocean temperature

The array QT(J,I,K) for K=1 to 8 is similarly equivalent to all the temporary and intermediate values of the above quantities, i.e., PT(J,I), UT(J,I,K), etc. Occasionally Q and QT are used in the program rather than the original variables, especially in the time steps where all Q quantities are treated at once (see, for example, instructions 1960 to 2220). The array QT is also equivalent to all other two-and three-dimensional arrays in the program not requiring permanent storage. The common, dimension, and equivalence statements are given on the immediately following pages.

```
CODE LISTING
C*
C*
                                                                      *00000040
C* COMMON BLOCK FOR MINTZ-ARAKAWA TWO-LEVEL GENERAL CIRCULATION MODEL
                                                                      *00000050
C*
                                                                      *00000060
C*
                                                                      *00000070
00000100
                   DMMON
                                                                       00000110
                      BCDMN
                                                                       00000120
               IMENSION
                                                                       00000130
     * BCOMN(67040), C(800), QTOT(46,72,20), Q(46,72,9), QT(46,72,11)
                                                                       00000140
     *, P(46,72), U(46,72,2), V(46,72,2), T(46,72,2), Q3(46,72)
*, PT(46,72), UT(46,72,2), VT(46,72,2), TT(46,72,2), Q3T(46,72)
                                                                       00000150
                                                                       00000160
     *,FD(46,72), H(46,72,2), PU(46,72), TD(46,72)
                                                                       00000170
     *, PHI(46,72), W(46,72), TOPDG(46,72)
                                                                       00000180
     *, CONV(46,72), PV(46,72), SD(46,72)
                                                                       00000190
     *, GW(46,72), GT(46,72), QD(46,72,9)
                                                                       00000200
     *, WORK1(46,72), WORK2(46,72)
                                                                       00000210
     *, TS(46,72), SN(46,72)
D I M E N S I D N
                                                                       00000220
                                                                       00000230
     * LAT(46), DXU(46), DXP(46), DYU(46), DYP(46)
                                                                       00000240
     *, SINL(46), COSL(46), AXU(46), AXV(46), AYU(46), AYV(46)
                                                                       00000250
     *, DXYP(46), F(46), SIG(2), AMONTH(3), XLABL(9), MAPLST(3,40)
DXV AND DYV ARE INTERM VARIABLES DNLY
                                                                       00000260
C
                                                                       00000270
     *, DXV(46), DYV(46)
                                                                       00000280
       FQUIVALENCE
                                                                       00000290
       (QTOT(1),Q(1)), (QTOT(29809),QT(1)), (BCDMN(1),C(1))
                                                                       00000300
     *, (BCOMN(801),OTOT(1)), (Q(1),P(1)), (Q(1,1,2),U(1))
                                                                       00000310
     *, {Q(1,1,4),V(1)), {Q(1,1,6),T(1)}, {Q(1,1,8),Q3(1)}
                                                                       00000320
    *, (Q(1,1,9),TOPDG(1)), (QT(1),QD(1),PT(1))
                                                                       00000330
    *, (QT(),1,2),UT(1),WORK1(1))
                                                                       00000340
    *, (QT(1,1,3),TS(1))
                                                                       00000350
    *, (QT(1,1,4),VT(1),WDRK2(1))
                                                                       00000360
    *, (QT(1,1,5),SN(1))
                                                                       00000370
    *, (QT(1,1,6),TT(1)), (QT(1,1,8),Q3T(1))
                                                                       00000380
    *, (QT(1,1,9),CDNV(1),SO(1))
                                                                       00000390
    *, (QT(1,1,10),H(1),PV(1),PHI(1),W(1))
                                                                       00000400
    *, (QT(1,1,11),PU(1),FD(1),TD(1))
                                                                       00000410
      E Q U I V A L E N C E (C(1),JM), (C(2),IM), (C(3),JTP), (C(4),KTP), (C(5),LTP)
                                                                      00000420
                                                                      00000430
    *, (C(6), MTP), (C(7), NOOUT), (C(8), RESTRT), (C(9), TAU)
                                                                      00000440
    *, (C(10), TAUI), (C(11), TAUO), (C(12), TAUD), (C(13), TAUE)
                                                                      00000450
    *, (C(14), TAUH), (C(15), TAUC), (C(16), ID), (C(17), OT)
                                                                      00000460
    *, (C(18),DLAT), (C(19),DLDN), (C(20),RAD), (C(21),RSOIST)
*, (C(22),DCLK), (C(23),SINO), (C(24),COSD), (C(25),TOFDAY)
                                                                      00000470
                                                                      00000480
    *, (C(26),MNTHDY), (C(27),DAYPYR), (C(28),ROTPER), (C(29),SDEDY)
*, (C(30),SDEYR), (C(31),EQNX), (C(32),APHEL), (C(33),DECMAX)
                                                                      00000490
                                                                      00000500
    *, (C(34), ECCN), (C(35), DAY), (C(36), GRAV), (C(37), RGAS)
                                                                      00000510
    *, (C(38), KAPA), (C(39), PSF), (C(40), PTROP), (C(41), PSL)
                                                                      00000520
    *, (C(42),TCNV), (C(44),A), (C(45),NCYCLE)
                                                                      00000530
    *, (C(46),NC3), (C(47),FM), (C(48),ED)
                                                                      00000540
    *, (C(57),PI), (C(58),ZMM)
                                                                      00000550
    *, (C(59),NPOL), (C(60),SPOL), (C(61),MRCH), (C(62),STAGJ)
                                                                      00000560
```

*, (C(63),STAGI), (C(64),SIG(1)), (C(66),AMONTH(1)) F Q U I V A L E N C E * (C(69),YIABL(1)), (C(70), (C))	00000570 00000580
10107/70EMBELIJI9 (U(/8).101(1)). (C/124).000/111	00000590
*, (C(170),0XP(1)), (C(216),0YU(1)), (C(262),0YP(1)) *, (C(308),0XYP(1)), (C(354),F(1)), (C(400),SINL(1))	00000600
*, (C(446),COSL(1)), (C(492),AXU(1)), (C(538),AXV(1))	00000610
** 'C'207/14YULIJI. ([.[630].AVV/11). /C/474) MADLOTAN.	00000620
'7 'V''77/14N3[EP]	00000630
*• (C(799)•TREADY)• (SINT•ISINT)	00000640
*, (DXV(1),DXP(1)), (DYV(1),OYP(1))	00000650
DEAL LAT WAR	00000660 00000670
REAL LAT, KAPA, NPOL	00000670
LOGICAL KEYS*1, BIT, MAPGEN, RESTRT, KEY, TREADY	00000690
COMMON /VKEYV/ KEYS(32) INTEGER SOEDY, SDEYR	00000700
JOEDI (SUE) SUE I K	00000710

C

```
C*
                                                           *00000030
C*
                                                           *00000040
C*
     MINTZ-ARAKAWA TWO-LEVEL ATMOSPHERIC GENERAL CIRCULATION MODEL
                                                           *0000050
C*
                                                           *0000060
C*
                                                           *00000070
C**********************
C
                                                            00000100
C
                                                            00000110
C
       CONTROL
                                                            00000120
/*
                                                            00000130
// DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                            00000140
       DD
                                                            00000150
     LOGICAL
               EVENT, CHECK, PASS2, EVNTH, NODUT, VIVA
                                                            00000160
     DIMENSION CXXX(800)
                                                           00000170
     EVENT(XTAU)=MOD(NSTEP.IFIX(XTAU*3600./DT+0.1)) .EQ. 0
                                                           00000180
     PASS2=. FALSE.
                                                           00000190
     DO 100 J=1,32
                                                           00000200
100
     KEYS(J)=.FALSE.
                                                           00000210
 200
     KNT=0
                                                           00000220
     RESTRT=. TRUE.
                                                           00000230
     VIVA= .TRUE.
                                                           00000240
     CALL INPUT
                                                           00000250
C
                                                           00000260
C
                                                           00000270
     NSTEP=TAU*3600./DT+0.1
                                                           00000280
     RESTRT=.FALSE.
                                                           00000290
C
                                                           00000300
     MAIN COMPUTATIONAL CONTROL
C
                                                           00000310
C
                                                           00000320
C
                                                           00000330
310
    NSTEP=NSTEP+1
                                                           00000340
     TAU=FLOAT(NSTEP)*ABS(DT)/3600.+1.E-3
                                                           00000350
     IF (TAU.GT.TAUE) GO TO 1200
                                                           00000360
     TOFDAY=LMOD(TAU, ROTPER)
                                                           00000370
     NOOUT=.NOT.(EVENT(TAUD) .OR. KEY(-8))
                                                           00000380
     IF (NOOUT .OR. MOD(NSTEP.NC3) .EQ. 0) GO TO 320
                                                           00000390
     NOOUT = . TRUE .
                                                           00000400
     KEYS (8) = . TRUE .
                                                           00000410
320
    CONTINUE
                                                           00000420
                                                           00000430
    CALL STEP
                                                           00000440
    IF (EVENT (24.)) CALL GMP
                                                           00000450
```

```
Č
        VARIOUS CHECKING AND HISTORY OPTIONS
                                                                              00000460
                                                                              00000470
   630
       IF (EVENT(TAUD)) CALL SOFT
                                                                              00000480
        IDAY=TAU/ROTPER
                                                                              00000490
        IF (EVENT(TAUH)) GO TO 1000
                                                                              00000500
       GO TO 310
                                                                              00000510
  1000 CONTINUE
                                                                              00000520
       READ (KTP) TAUX
                                                                              00000530
       IF (TAUX.GT.0.0) GO TO 1100
                                                                              00000540
       IF (ABS(TAU-TAUH+TAUX).GT..O1) GO TO 1100
                                                                             00000550
  1001 CONTINUE
                                                                             00000560
       BACKSPACE KTP
                                                                             00000570
       WRITE (KTP) TAU, C
                                                                             00000580
       CALL OUTAPE(KTP.2)
                                                                             00000590
       PRINT 1005, TAU
                                                                             00000600
 1005 FORMAT (1X, WRITE TAPE ',F8.2)
                                                                             00000610
 GO TO 310
1100 WRITE (MTP,1110) TAUX, TAUX
                                                                             00000620
                                                                             00000630
 1110 FORMAT (1X, SOME MESS ON TAPE , 1X, E12.5, 1X, IB)
                                                                             00000640
                                                                             00000650
 1200 WRITE (MTP, 1210) TAU
                                                                             00000660
 1210 FORMAT (1X. TERMINATING AS REQUIRED AT TAU=+, F8.2)
                                                                             00000670
                                                                             00000680
C
                                                                             00000690
 9200 FORMAT( * WMSG020 MINTZ-ARAKAWA GLOBAL WEATHER MODEL NOW RUNNING 100000710
 9670 FORMAT( * WMSG040 ( *, A4, *) SWITCHING FROM TAPE *, 12, * TO TAPE *, 12,00000720
 9680 FORMATI' WMSG035 SIM TIME IS DAY 1,14,1
                                                                            00000730
 9715 FORMAT ( * WMSG036 ( * , A4 , * ) HAS STOPPED AT DAY * , 14 , * / HOUR * ,
                                                                            00000740
                                                                            00000750
                                                                            00000760
C
                                                                            00000770
         END
                                                                            00000780
                                                                            00000790
```

```
00000800
        SUBROUTINE OUTAPE(K.1)
                                                                              00000810
// DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00000820
11
          DD
                                                                              00000830
      IF(1.EQ.2) GO TO 20
                                                                              00000840
      READ (K) P
                                                                              00000850
      READ (K) U
                                                                              00000860
      READ (K) V
                                                                              00000870
      READ (K) T
                                                                              00000880
      READ (K) Q3
                                                                              00000890
      READ (K) TDPOG
READ (K) PT
                                                                              00000900
                                                                              00000910
      READ (K) GW
                                                                              00000920
      READ (K) TS
                                                                              00000930
      READ (K) GT
                                                                              00000940
      READ (K) SN
                                                                              00000950
      READ (K) TT
                                                                              00000960
      READ (K) Q3T
                                                                              00000970
      READ (K) SD
                                                                              00000980
      READ (K) H
                                                                              00000990
      READ (K) TD
                                                                              00001000
      RETURN
                                                                              00001010
   20 CONTINUE
                                                                              00001020
      WRITE (K) P
      WRITE (K) U
                                                                              00001030
                                                                              00001040
      WRITE (K) V
                                                                              00001050
      WRITE (K) T
                                                                              00001060
      WRITE (K) 03
                                                                              00001070
      WRITE (K) TOPOG
      WRITE (K) PT
                                                                              00001080
                                                                              00001090
      WRITE (K) GW
                                                                              00001100
      WRITE (K) TS
      WRITE (K) GT
                                                                              00001110
      WRITE (K) SN
WRITE (K) TT
                                                                              00001120
                                                                              00001130
      WRITE (K) Q3T
                                                                              00001140
                                                                              00001150
      WRITE (K) SD
                                                                              00001160
      WRITE (K) H
                                                                              00001170
      WRITE (K) TD
                                                                              00001180
      TAUX =- ABS (TAU)
      WRITE (K) TAUX, C
                                                                              00001190
                                                                              0001200
      BACKSPACE K
      THE NEGATIVE RECORD PREVENTS NOISE, MISSING RECORDS,
                                                                              00001210
C
                                                                              00001220
      AND MISSING TRAILER LABELS.
      RETURN
                                                                              00001230
                                                                              00001240
      END
```

SUBROUTINE 00001250 GMP 00001260 00001270 // DD DISP=OLD.DSN=MES727.AHN.COMMON 00001280 00001290 DIMENSION ZM(46) 00001300 FIM=IM 00001310 DO 135 J=1.JM 00001320 ZM(J)=0.0 00001330 DO 136 I=1.IM 00001340 136 ZM(J)=ZM(J) + P(J.1) 00001350 135 ZM(J)=ZM(J)/F1M 00001360 WTM=O. 00001370 ZMM=O. 000013A0 DO 137 J=1.JM 00001390 00001400 WTM = WTM + ARS(DXYP(J)) 137 ZMM = ZMM + ZM(J) *ABS(DXYP(J)) 00001410 ZMM=ZMM/WTM +PTROP DELTAP = PSF - ZMM DO 301 1=1.1M DO 301 J=1.JM 00001420 00001430 00001440 00001450 301 P(J.1) = P(J.1) + DELTAP 00001460 WRITE(6.138) DFLTAP 00001470 138 FORMAT(PRESSURE ADDED . .F16.8) 00001480 RETURN 00001490 END 00001500

C //* // OC //	PUNCTION VPHI4 (J.1) DISP=OLD.DSN=MES727.ARN.COMMON DD * VPHI4=0. IF (TOPOG(J.1).LT. 1.0) VPHI4=AMOD(-TOPOG(J.1).10.E5) RETURN END	00001510 00001520 00001530 00001550 00001550 00001570 00001580 00001590 00001600
	FUNCTION IPK(IL,IR) INTEGER IMALF+2(2) EQUIVALENCE (IMALF(1),IWD) IMALF(1)=IL IMALF(2)=IR IPK=IWD RETURN ENTRY IRH(IPKWD) IWD=IPKWD IRH=IMALF(2) RETURN ENTRY ILH(IPKWD) IWD=IPKWD ILH=IMALF(1) RETURN ENTRY ILH(IPKWD) ILH=IMALF(1) RETURN END	00001610 00001620 00001630 00001640 00001650 00001660 00001670 00001690 00001710 00001720 00001730 00001740 00001750 00001760
	LOGICAL FUNCTION KEY(M) LOGICAL KEYS+1(32) COMMON /VKEYV/ KEYS N=IABS(M) KFY=KEYS(N) IF (M .LT. O) KFYS(N)=.FALSE. RETURN END	00001770 00001780 00001790 00001800 00001810 00001820 00001830 00001840

```
SUBROUTINE STEP
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                             00001850
                                                                             00001860
 11
       00
 C
                                                                             00001870
 C
        MAIN LOOP OF INTEGRATION
                                                                             00001880
 C
       FORWARD STEP (CENTERED IN SPACE)
                                                                             00001890
 C
                                                                             00001900
                                                                             00001910
       MRCH=1
       DO 310 K=1,8
                                                                             00001920
                                                                             00001930
       DO 310 1=1.1M
       DO 310 J=1,JM
                                                                             00001940
   310 QT(J,1,K)=Q(J,1,K)
                                                                             00001950
       THRP=TAU/24.
                                                                             00001960
       PRINT 9999. TAU, THEP
                                                                             00001970
  9999 FORMAT (1X, 'TIME=', 2X, F8, 2, 2X, F9, 4)
                                                                             00001980
       CALL COMPI
                                                                             00001990
                                                                             00002000
                                                                             00002010
       DO 360 K=1.8
       DO 360 1=1.1M
                                                                             00002020
                                                                             00002030
       DO 360 J=1,JM
       TEMP=Q(J,I,K)
                                                                             00002040
       0(J.1.K)=01(J.1.K)
                                                                             00002050
  360 QT(J.1.K)=TEMP
                                                                            00002060
C
                                                                            00002070
C
                                                                            00002080
       BACKWARD STEP
                                                                            00002090
       NS=MOD(NSTEP.NCYCLE)
                                                                            00002100
                                                                            00002110
       MRCH= 2
       IF (NS.EQ.1) MRCH=3
                                                                            00002120
      IF(NS.EQ.2) MRCH=4
                                                                            00002130
                                                                            00002140
      CALL COMPI
      CALL COMPS
                                                                            00002150
      DO 380 K=1.8
                                                                            00002160
                                                                            00002170
      DO 380 1=1.1M
      DO 380 J=1.JM
                                                                            00002180
      TFMP=Q(J.I.K)
                                                                            00002190
                                                                            00002200
      Q(J.1.K)=QT(J.1.K)
  380 QT(J.I.K)=TEMP
                                                                            00002210
                                                                            00002220
      IF (MODINSTEP.NC3).NE.O ) GO TO 400
                                                                            00002230
                                                                            00002240
      CALL COMP4
                                                                            00002250
      CALL COMP3
400
      RETURN
                                                                            00002260
      FND
                                                                           00002270
                                                                           00002280
```

```
SUBROUTINE COMPI
                                                                            00002290
 /+
// DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                            00002300
                                                                            00002310
                                                                            00002320
       JMM1=JM-1
                                                                            00002330
       IMM2=IM-2
                                                                            00002340
      FIM=IM
                                                                            00002350
       SIG1=SIG(1)
                                                                            00002360
      S1G3=S1G(2)
                                                                            00002370
C
                                                                            00002380
C
                                                                           00002390
C
      MRCH=1
                  CENTERED IN SPACE AND FORWARD IN TIME
C
                                                                           00002400
      MRCH=2
                  CENTERED IN SPACE AND BACKWARD IN TIME
                UP-RIGHT UNCENTERED IN SPACE AND BACKWARD IN TIME
                                                                           00002410
C
      MR CH=3
C
                DOWN-LEFT UNCENTERED IN SPACE AND BACKWARD IN TIME
                                                                           00002420
      MRCH=4
C
                                                                           00002430
                                                                           00002440
C
      TIME EXTRAPOLATION INTERVAL FOR ADVECTION TERMS
                                                                           00002450
C
                                                                           00002460
      TEXCO=DT
                                                                           00002470
      IF (MRCH.FQ.1) TEXCO=0.5*DT
C
                                                                           00002480
C
                                                                           00002490
      PREPARATION FOR TIME EXTRAPOLATION
      TRANSFORMATION TO AREA-PRESSURE WEIGHTED VARIABLES
C
                                                                           00002500
C
      OT CONTAINS VARIABLES TO WHICH TENDENCIES ARE TO BE ADDED
                                                                           00002510
                                                                           00002520
                                                                           00002530
      DO 2100 I=1.IM
                                                                           00002540
      DO 2100 J=1.JM
                                                                           00002550
      FD(J,I)=PT(J,I)+DXYP(J)
2100 Q3T(J.I)=Q3T(J.I)*FD(J.I)
                                                                           00002560
                                                                           00002570
      DO 2120 L=1.2
                                                                           00002580
      DO 2120 1=1.1M
                                                                           00002590
      IP1 = MOD(I . IM) + 1
                                                                           00002600
     DO 2110 J=1.JM
2110 TT(J,I,L)=TT(J,I,L)+FD(J,I)
                                                                           00002610
                                                                           00002620
     DO 2120 J=2.JM
     FDU=0.25*(FD(J.1)+FD(J.1P1)+FD(J-1.1)+FD(J-1.1P1))
                                                                           00002630
     IF (J .EQ. 2) FDU=0.25*(FD(2.1)+FD(2.1P1))+FD(1.1)
                                                                           00002640
     IF (J .EQ. JM) FDU=0.25*(FD(JM-1.1)+FD(JM-1.1P1))+FD(JM.1)
                                                                          00002650
     UT(J.I.L)=UT(J.I.L)=FDU
                                                                          00002660
                                                                          00002670
2120 VT(J.I.L)=VT(J.I.L)+FDU
                                                                          00002680
                                                                          00002690
```

```
C
                                                                               00002700
       COMPUTING MASS FLUX * P
C
                                   DII #
                                                                               00002710
C
                             * PV
                                   UV *
                                                                               00002720
C
                                                                               00002730
 2149 L=1
                                                                              00002740
 2150 DO 2160 I=1.IM
                                                                              00002750
       IP1=MOD(I \cdot IM)+1
                                                                              00002760
       DO 2160 J=2.JMM1
                                                                              00002770
       IF(MRCH .LE. 2) PU(J.1)=0.25*(DYU(J)*U(J.1.L)+DYU(J+1)*U(J+1.L))00002780
IF(MRCH .EQ. 3) PU(J.1)=0.5*DYU(J+1)*U(J+1.1.L) 00002790
       IF(MRCH .EQ. 4) PU(J.1)=0.5*DYU(J)*U(J.1.L)
                                                                              00850000
 2160 CONTINUE
                                                                              00002810
C
                                                                              00002820
       CALL AVRX(11)
                                                                              00002830
C
                                                                              00002840
      DO 2180 I=1.IM
                                                                              00002850
       IP1=MOD(I,IM)+i
                                                                              00002860
      IM1=MOD(I+IMM2+IM)+1
                                                                              00002870
       DO 2170 J=2,JMM1
                                                                              00002880
 2170 PH(J,I)=PU(J,I)*(P(J,I)+P(J,IP1))
                                                                              00002890
      DO 2180 J=2,JM
                                                                              00002900
      IF(MRCH .LF. 2) PV(J.I)=0.25*DXU(J)*(V(J.I.L)+V(J.IM1.L))
                                                                              00002910
                                            *(P(J+I)+P(J-1+I))
                                                                              00002920
      IF(MRCH .EO. 3) PV(J.1)=0.5*DXU(J)*V(J.1.L)*(P(J.1)+P(J-1.1))
                                                                              00002930
      IF(MRCH .EQ. 4) PV(J.I)=0.5*DXU(J)*V(J.IM1.L)*(P(J.I)+P(J-1.I))
                                                                              00002940
 2180 CONTINUE
                                                                              00002950
C
                                                                              00002960
C
      EQUIVALENT PU AT POLES. PV(1.1) IS USED AS A WORKING SPACE.
                                                                              00002970
                                                                              00002980
      VM1=0.0
                                                                              00002990
      VM2=0.0
                                                                              00003000
      DO 2185 I=1.IM
                                                                              00003010
      VM1=VM1+PV(2.1)
                                                                              00003020
 2185 VM2=VM2+PV(JM.I)
                                                                              00003030
      VM1=VM1/F1M
                                                                              00003040
      VM2 = VM2 / F1M
                                                                              00003050
      PV(1.1)=0.0
                                                                              00003060
      DO 2190 1=2.IM
                                                                              00003070
 2190 PV(1,1)=PV(1,1-1)+(PV(2,1)-VM1)
                                                                              00003080
      VM1=0.0
                                                                              00003090
      DO 2192 1=1.IM
                                                                              00003100
 2192 VM1=VM1+PV(1,1)
                                                                              00003110
      VM1=VM1/F1M
                                                                              00003120
      DO 2195 1=1.1M
                                                                              00003130
2195 PU(1,1)=-(PV(1,1)-VM1)*3.0
                                                                              00003140
      PV(1,11=0.0
                                                                              00003150
      DO 2200 1=2.IM
                                                                              00003160
2200 PV(1.1)=PV(1.1-1)+(PV(JM.1)-VM2)
                                                                              00003170
      VM2=0.0
                                                                              000031A0
      DO 2202 1=1.1M
                                                                              00003190
2202 VM2=VM2+PV(1+1)
                                                                              00003200
      VM2 = VM2/FIM
                                                                              00003210
      DO 2205 I=1.IM
                                                                             00003220
2205 PU(JM.I)=(PV(1.I)-VM2)+3.0
                                                                              00003230
                                                                             00003240
```

```
HORIZONTAL ADVECTION OF THERMODYNAMIC ENERGY AND MOISTURE EQUATIONSO0003250
                                                                              00003260
       FXCO=0.5+TEXCO
                                                                              00003270
       DO 2220 I=1.IM
                                                                              00003280
       IP1=MOD(I,1M)+1
                                                                              00003290
       DO 2210 J=2.JMM1
                                                                              00003300
       FLUX=FXCO+PU(J.1)
                                                                              00003310
       FLUXT=FLUX*(T(J,I,L)+T(J,IP1,L))
                                                                              00003320
       IF ((J .EQ. 2 .OR. J .EQ. JMM1) .AND. FLUX .LT. 0.)
FLUXT=FLUX+2.*T(J,IP1.L)
                                                                              00003330
                                                                              00003340
         ((J .EQ. 2 .OR. J .EQ. JMM1) .AND. FLUX .GE. 0.0)
                                                                              00003350
           FLUXT=FLUX+2.*T(J.1.L)
                                                                              00003360
       TT(J,I,L)=TT(J,I,L)-FLUXT
                                                                              00003370
       TT(J, 1P1, L)=TT(J, 1P1, L)+FLUXT
                                                                              00003380
       IF (L.EQ.1) FLUX = -0.25 + FLUX
                                                                              00003390
       IF (L.EQ.2) FLUX=1.25*FLUX
                                                                              00003400
       Q3M=Q3(J,I)+Q3(J,IP1)
                                                                              00003410
       IF(03M.LT.10.E-10) GO TO 2210
                                                                              00003420
C 10.E-10 IS A RELATIVELY SMALL NUMBER
                                                                              00003430
       FLUXQ=FLUX+Q3M
                                                                              00003440
      IF(03(J.1).LT.03(J.1P1) .AND. FLUX.GT.0.)
                                                                              00003450
          FLUXQ=FLUX+4.+03(J.1)+03(J.1P1)/03M
                                                                              00003460
      IF(Q3(J,1).GT.Q3(J,IP1) .AND. FLUX.LT.O.)
                                                                              00003470
         FLUXQ=FLUX+4.+03(J.1)+03(J.1P1)/03M
                                                                              00003480
      Q3T(J,1)=Q3T(J,1)-FLUXQ
                                                                              00003490
      Q3T(J. IP1)=Q3T(J. IP1)+FLUXQ
                                                                              00003500
 2210 CONTINUE
                                                                              00003510
      DO 2220 J=2.JM
                                                                              00003520
      FLUX=FXCO+PV(J.I)
                                                                              00003530
      FLUXT=FLUX+(T(J,I,L)+T(J-1,I,L))
                                                                              00003540
      IF (J .FQ. 2 .AND. FLUX .LT. O.) FLUXT=FLUX+2.+T(2.1.L)
                                                                              00003550
         (J .FO. JM .AND. FLUX .GT. O.) FLUXT=FLUX+2.+T(JM-1.1.L)
(J .FO. 2 .AND. FLUX .GE. O.) FLUXT=FLUX+2.+T(1.1.L)
                                                                              00003560
      1 F
                                                                              00C03570
      IF (J .EQ. JM .AND. FLUX .LF. O.) FLUXT=FLUX+2.+T(JM.1.L)
                                                                              00003580
      TT(J,1,L)=TT(J,1,L)+FLUXT
                                                                              00003590
      TT(J-1,I,L)=TT(J-1,I,L)-FLUXT
                                                                              00003600
         (L.FQ.1) FLUX=-0.25*FLUX
                                                                             00003610
      IF (L.EQ.2) FLUX=1.25*FLUX
                                                                             00003620
      Q3M=Q3(J,1)+Q3(J-1,1)
                                                                             00003630
      IF(Q3M.LT.10.E-10) GOTO 2220
                                                                             00003640
C
      10.E-10 IS AN ARBITRARY LOWER LIMIT
                                                                             00003650
      FLUXQ=FLUX+Q3M
                                                                             00003660
      1F(Q3(J+1)-LT-Q3(J-1+1) .AND. FLUX-LT-O.)
                                                                             00003670
         FLUXQ=FLUX*4.*Q3(J.1)*Q3(J-1.1)/Q3M
                                                                             00003680
      1F(03(J,1).GT.03(J-1,1) .AND. FLUX.GT.0.)
                                                                             00003690
         FLUXQ=FLUX+4.+Q3(J+1)+Q3(J-1+1)/Q3M
                                                                             00003700
      Q3T(J,1)=Q3T(J,1) · FLUXQ
                                                                             00003710
      03T(J-1,1)=03T(J-1,1)-FLIIXQ
                                                                             00003720
2220 CONTINUE
                                                                             00003730
                                                                             00003740
```

```
C
      HORIZONTAL ADVECTION OF EQUATION OF MOTION
                                                                           00003750
C
                                                                           00003760
      FXCO=TEXCO/12.
                                                                           00003770
      FXCO1=TFXCO/24.
                                                                           00003780
      DO 2320 I=1.IM
      IP1=MOD(I,IM)+I
                                                                           00003790
      IM1 = MOD ( I + I MM2 + IM ) + I
                                                                           00003800
                                                                           00003810
      DO 2310 J=2,JM
      FLUX=FXCO+(PU(J.1)+PU(J-1.1)+PU(J.IM1)+PU(J-1.IM1))
                                                                           00003R20
      FLUXU=FLUX+(U(J+I+L)+U(J+IM1+L))
                                                                           00003830
                                                                           00003840
      UT(J,I,L)=UT(J,I,L)+FLUXU
      UT(J.IM1.L)=UT(J.IMI.L)-FLUXU
                                                                           00003850
      FLUXV=FLUX+(V(J+I+L)+V(J+IMI+L))
                                                                          00003860
                                                                          00003870
      VT(J.I.L)=VT(J.I.L)+FLUXV
                                                                          00003880
 2310 VT(J.IM1.L)=VT(J.IM1.L)-FLUXV
                                                                          00003890
      DO 2320 J=2.JMM1
      FLUX=FXCO+(PV(J.1)+PV(J.1P1)+PV(J+1.1)+PV(J+1.1P1))
                                                                          00003900
                                                                          00003910
      FLUXU=FLUX+(U(J+I+L)+U(J+I+I+L))
      UT(J+1,I,L)=UT(J+1,I,L)+FLUXU
                                                                          00003920
                                                                          00003930
      UT(J,1,L)=UT(J,1,L)-FLUXU
      FLUXV=FLUX+(V(J+I+L)+V(J+I+I+L))
                                                                          00003940
                                                                          00003950
      VT(J+1.I.L)=VT(J+1.I.L)+FLUXV
      VT(J.1.L)=VT(J.1.L)-FLUXV
                                                                          00003960
     FLUX=FXCO1+(PU(J.1)+PU(J.1M1)+PV(J.1)+PV(J+1.1))
                                                                          00003970
                                                                          00003980
     FLUXU=FLUX+(U(J+1+I+L)+U(J+1MI+L))
                                                                          00003990
     UT(J+1,I,L)=UT(J+1,I,L)+FLUXU
     UT(J.IMI.L)=UT(J.IMI.L)-FLUXU
                                                                          00004000
     FLUXV=FLUX+(V(J+I+I+L)+V(J+IM1+L))
                                                                          00004010
                                                                          00004020
     VT(J+1.I.L)=VT(J+1.I.L)+FLUXV
     VT(J.IM1.L)=VT(J.IM1.L)-FLHXV
                                                                          00004030
     FLUX=FXCO1+(-PU(J+1)-PU(J+IM1)+PV(J+I)+PV(J+I+I))
                                                                          00004040
                                                                          00004050
     FLUXU=FLUX+(U(J+1.IMI.L)+U(J.I.L))
     UT(J+1,IM1,L)=UT(J+1,IM1,L)+FLUXU
                                                                         00004060
                                                                         00004070
     UT(J,I,L)=UT(J,I,L)-FLUXU
     FLUXV=FLUX+(V(J+1+IM1+L)+V(J+I+L))
                                                                         00004080
     VT(J+1.1M1.L)*VT(J+1.1M1.L)+FLUXV
                                                                         00004090
2320 VT(J+1+L)=VT(J+1+L)-FLIIXV
                                                                         00004100
                                                                         00004110
                                                                         00004120
```

```
C
      CONTINUITY EQUATION
                                                                           00004130
C
                                                                           00004140
      DO 2400 1=1.1M
                                                                           00004150
      IM1=MOD(I+IMM2,IM)+I
                                                                           00004160
      DO 2400 J=1,JM
                                                                           00004170
      IF (J.EQ.1) CONVM=-PV(2.1)+0.5
                                                                           00004180
      IF (J.EQ.JM) CONVM=PV(JM.1)*0.5
                                                                           00004190
      IF (J.GT.1 .AND. J.LT.JM) CONVM=-(PU(J.I) -PU(J.IM1)
                                                                           00004200
                                         +PV(J+1.1)-PV(J.1) )+0.5
                                                                           00004210
       IF (L.EQ.1) CONV(J.1)=CONVM
                                                                           00004220
       IF (L.EQ.2) PV(J.1)=CONVM
                                                                           00004230
 2400 CONTINUE
                                                                           00004240
      IF(L.EQ.2) GO TO 2410
                                                                           00004250
       L=2
                                                                           00004260
       GO TO 2150
                                                                           00004270
 2410 CONTINUE
                                                                           00004280
C
                                                                           00004290
C
       CONV IS MASS CONVERGENCE AT L=1 AND PV IS THAT AT L=2.
C
                                                                           00004300
                                                                           00004310
 2411 PB1=0.0
                                                                           00004320
      PB2=0.0
                                                                           00004330
      PB3=0.0
                                                                           00004340
      PB4=0.0
                                                                           00004350
      DO 2402 1=1.1M
                                                                          00004360
      PR1=PB1+CONV(1,1)
                                                                          00004370
      PB2=PB2+CONV(JM.1)
                                                                          00004380
      P83=P83+PV(1.1)
                                                                          00004390
2402 PB4=PB4+PV(JM,I)
     PH1=FR1/FIM
                                                                          00004400
                                                                          00004410
     PR2=PB2/FIM
                                                                          00004420
     PH3=PB3/FIM
                                                                          00004430
     PB4=PB4/FIM
                                                                          00004440
     DO 2405 1=1.1M
                                                                          00004450
     CONV(1,1)=PH1
     CONV( JM . 1) = PB2
                                                                          00004460
                                                                          00004470
     PV(1.1)=PB3
2405 PV(JM.1)=PB4
                                                                          00004480
                                                                          00004490
     DO 2420 I=1.IM
                                                                          00004500
     00 2420 J=1.JM
                                                                          00004510
     PIT=CONV(J.1)+PV(J.1)
                                                                          00004520
     SD(J.1)=CDNV(J.1)-PV(J.1)
                                                                          00004530
     PT(J.1)=PT(J.1)+D1+P1T/DXYP(J)
                                                                          00004540
```

```
C
                                                                            00004550
C
       ENERGY CONVERSION TERM IN THERMODYNAMIC ENERGY EQUATION
                                                                            00004560
                                                                            00004570
       PL1=PTROP+SIG1=P(J,I)
                                                                            00004580
       PL3=PTROP+SIG3*P(J.1)
                                                                            00004590
       PK1=PL1++KAPA
                                                                            00004600
       PK3=PL3++KAPA
                                                                            00004610
       TETAM=0.5*(T(J,1,1)/PK1+T(J,1,2)/PK3)
                                                                            00004620
       TT(J,1,1)=TT(J,1,1)+DT*(SIG1*KAPA*P(J,1)*T(J,1,1)*PIT/PL1
                                                                            00004630
                                   -SD(J.1)*TETAM*PK1)
                                                                           00004640
       TT(J.1.2)=TT(J.1.2)+DT*(SIG3*KAPA*P(J.1)*T(J.1.2)*PIT/PL3
                                                                           00004650
                                   +SD(J.I)*TETAM*PK3)
                                                                           00004660
 2420 CONTINUE
                                                                           00004670
C
                                                                           00004680
       VERTICAL ADVECTION OF MOMENTUM
                                                                           00004690
Č
                                                                           00004700
 2500 FXC()=0.5*TEXC()
                                                                           00004710
      DO 2510 I=1.IM
                                                                           00004720
      IP1=MOD(I,IM)+1
                                                                           00004730
      DO 2510 J=2,JM
                                                                           00004740
      SDU=0.25*(SD(J.I)+SD(J.IP1)+SD(J-1.I)+SD(J-1.IP1))
                                                                           00004750
      1F (J .EQ. 2) SDU=0.25*(SD(2.1)+SD(2.1P1))+SD(1.1)
                                                                           00004760
      IF (J .EQ. JM) SDU=0.25*(SD(JM-1.1)+SD(JM-1.1P1))+SD(JM.1)
                                                                           00004770
      VAD=FXCO+SDU+(U (J.1.1)+U (J.1.2))
                                                                           00004780
      UT(J.1.2)=UT(J.1.2)+VAD
                                                                           00004790
      UT (J.1.1)=UT (J.1.1)-VAD
                                                                           00004800
      VAD=FXCO+SDU+(V (J.1.1)+V (J.1.2))
                                                                           00004810
      VT(J,1,2)=VT(J,1.2)+VAD
                                                                           00004820
 2510 VT(J,I,1)=VT(J,I,1)-VAD
                                                                           00004830
C
                                                                           00004840
C
                                                                           00004850
      RETURN
                                                                           00004860
      END
                                                                           00004870
```

```
SUBROUTINE COMP 2
                                                                            00004880
                                                                            00004890
// DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                            00004900
11
      DD
                                                                            00004910
C
                                                                            00004920
      JMM1=JM-1
                                                                            00004930
      IMM2=IM-2
                                                                            00004940
      FIM=IM
                                                                            00004950
      TEXCO=DT
                                                                            00004960
      IF(MRCH.EQ.1) TEXCO=0.5*DT
                                                                            00004970
C
      IF (KEY(31)) TEXCO=DT
                                                                            00004980
      HRGAS=RGAS/2.
                                                                            00004990
C
                                                                            00005000
C
      CORIOLIS FORCE
                                                                            00005010
                                                                            00005020
      FXCO=0.125*TEXCO
                                                                            00005030
      DO 3140 L=1.2
                                                                            00005040
      DO 3110 I=1.IM
                                                                            00005050
      IM1 = MOD(I+IMM2.IM)+1
                                                                            00005060
      FD(1.1)=0.0
                                                                            00005070
      FD(JM.1)=0.0
                                                                            00005080
      DO 3110 J=2,JMM1
                                                                            00005090
3110 FD(J,1)=F(J)+DXYP(J)
                                                                            00005100
     + +.25*(U(J,1,L)+L(J,[M1,L)+U(J+1,[,L)+U(J+1,[M1,L))
                                                                            00005110
        *(DXU(J)-DXU(J+1))
                                                                            00005120
      DO 3140 I=1.IM
                                                                            00005130
      IM1 =MOD(I+IMM2, IM)+1
                                                                            00005140
      DO 3140 J=2,JM
                                                                            00005150
      ALPHA=FXCO+(P(J+1)+P(J-1+1))+(FD(J+1)+FD(J-1+1))
                                                                            00005160
      UT(J, I, L) = UT(J, I, L) + ALPHA + V(J, I, L)
                                                                            00005170
      UT(J.IM1.L) =UT(J.IM1.L)+ALPHA+V(J.IM1.L)
                                                                            00005180
      VT(J+I+L)=VT(J+I+L)-ALPHA+U(J+I+L)
                                                                            00005190
3140 VT(J.IM1.L)=VT(J.IM1.L)-ALPHA+U(J.IM1.L)
                                                                            00005200
```

```
C
                                                                              00005210
  C
        PRESSURE GRADIENT
                                                                              00005220
  3200
        DO 3340 L=1.2
                                                                              00005230
  C
                                                                              00005240
  C
                                                                              00005250
        COMPUTATION OF PHI
  C
                                                                              00005260
        DO 3210 I=1.IM
                                                                              00005270
        DO 3210 J=1.JM
                                                                              00005280
        PH14=VPH14(J.1)
                                                                              00005290
        VPS1= P(J.1)+0.25/(P(J.1)+0.25 + PTROP)
                                                                              00005300
       VPG3= P(J.1)+0.75/(P(J.1)+0.75 + PTROP)
                                                                              00005310
       VPK! -((P(J.1)+.25+PTROP)/(P(J.1)+.75+PTROP))**KAPA
                                                                              00005320
                                                                             00005330
        VPK3=1./VPK1
        IFIL.FO.21 GO TO 3205
                                                                              00005340
       COE1=(VPS1+0.5+(VPK3-1.)/KAPA)+HRGAS
                                                                             00005350
       COE2 = ( VPS3+0.5 + (1. - VPK1)/KAPA) * HRGAS
                                                                             00005360
       PHI(J.1) = COE1 + T(J.1.1) + COF2 + T(J.1.2) + PHI4
                                                                             00005370
       GO TO 3210
                                                                             00005380
       COE3=(VPS1-0.5+(VPK3-1.)/KAPA)+HRGAS
                                                                             00005390
       COE4=(VPS3-0.5+(1.-VPK1)/KAPA)+HRGAS
                                                                             00005400
       PH1(J,1)*CDE3*T(J,1,1)+CDE4*T(J,1,2)+PH14
                                                                             00005410
 3210
       CONTINUE
                                                                             00005420
 C.
                                                                             00005430
       GRADIENT OF PHI
C
                                                                             00005440
C.
                                                                             00005450
                                                                             00005460
       FXCI)=0.25+DT
       FXC()1=0.5+01
                                                                             00005470
       DO 3220 1=1.1M
                                                                             00005480
3220
      PU(1.1)=0.
                                                                             00005490
       UN 3250 I=1.IM
                                                                             00005500
       1P1=MOD(1.1M)+1
                                                                             00005510
       IM1 = MOD(I+IMM2 + IM)+I
                                                                             00005520
       DO 3250 J=2,JM
                                                                             00005530
      TEMP1=(P(J.IP1)+P(J.I)) + (PHI(J.IPI)-PHI(J.I))
                                                                             00005540
      P))(J.1)=TFMP1
                                                                             00005550
      TEMP2=(P(J.1)+P(J-1.1))+(PH1(J.1)-PH1(J-1.1))+DXH(J)
                                                                             00005560
      IF(MRCH .FO. 3) GII TO 3230
                                                                            00005570
      IF (MRCH . FO. 4) GO TO 3240
                                                                            00005580
      MRCH# 1 OR 2. CENTERED IN SPACE.
C
                                                                            00005590
                                                                            00005600
      VI(J.I.L) =VI(J.I.L)-FXCO+TEMP2
                                                                            00005610
      VT(J.IM1.L)=VT(J.IM1.L)=FXCO+TEMP?
                                                                            00005620
      GO TO 3250
      MRCH#3. OP-RIGHT UNCENTERED.
                                                                            00005630
 3230 VT(J.IM1.L)=VT(J.IM1.L)=FXC01+TFMP2
                                                                            00005640
                                                                            00005650
      60 10 3250
                                                                            00005660
      MRCH=4. DOWN-LEFT )INCENTERED.
3240 VT(J+1+L)=VT(J+1+L)-FXC01+TFMP2
                                                                            00005670
3250 CONTINUE
                                                                            00005680
                                                                            00005690
                                                                            00005700
```

```
C
       GRADIENT OF P
                                                                               00005710
C
       SIGMA PPALPHA IS STORED AT PHI
                                                                               00005720
C
                                                                               00005730
       DO 3260 I=1.IM
                                                                               00005740
       DO 3260 J=1,JM
                                                                               00005750
3260
       PHI(J.I)=SIG(L)*P(J.I)*RGAS*T(J.I.L)/(PTROP+SIG(L)*P(J.I))
                                                                               00005760
       DO 3290 I=1.IM
                                                                               00005770
       IP1=MOD(I.IM)+1
                                                                               00005780
       IM1=MOD(I+IMM2+IM)+1
                                                                               00005790
       DO 3290 J=2.JM
                                                                               00005800
       TEMP1=(PHI(J,IP1)+PHI(J,I))+(P(J,IP1)-P(J,I))
                                                                               00005810
       PU(J,I)=TEMP1+PU(J,I)
                                                                               00005820
       TEMP2=(PHI(J.1)+PHI(J-1.1))+(P(J.1)-P(J-1.1))+0XU(J)
                                                                               00005830
       IF (MRCH .EQ. 3) GO TO 3270
                                                                               00005840
       IF(MRCH .EQ. 4) GO TO 3280
                                                                               00005850
       MRCH = 1 OR 2.
C
                          CENTERED IN SPACE.
                                                                               00005860
       VT(J,I,L)=VT(J,I,L)-FXCO+TEMP2
                                                                               00005870
      VT(J.IM1.L)=VT(J.IM1.L)-FXCO+TEMP2
                                                                               00005880
      GO TO 3290
                                                                               00005890
      MRCH=3. UP-RIGHT UNCENTERED.
                                                                               00005900
 3270 VT(J, IM1, L) = VT(J, IM1, L) - FXCO1 + TEMP2
                                                                               00005910
      GO TO 3290
                                                                               00905920
      MRCH=4. DOWN-LEFT UNCENTERED
                                                                               00005930
 3280 VT(J,I,L)=VT(J,I,L)-FXC01+TEMP2
                                                                              00005940
 3290 CONTINUE
                                                                               00005950
C
                                                                              00005960
      CALL AVRX(11)
                                                                              00005970
C
                                                                              00005980
      DO 3300 I=1.IM
                                                                              00005990
      DO 3300 J=2,JM
                                                                              00006000
      IF (MRCH_{\bullet}LE_{\bullet}2) UT(J_{\bullet}I_{\bullet}L)=UT(J_{\bullet}I_{\bullet}L)=FXCO*OYU(J)
                                                                              00006010
                               (PU(J.I)+PU(J-1.I))
                                                                              00006020
      IF(MRCH.EQ.3) UT(J.I.L)=UT(J.I.L)-FXCD1+DYU(J)+PU(J.I)
                                                                              00006030
      1F(MRCH.EQ.4) UT(J.I.L)=UT(J.I.L)-FXCO1+0YU(J)+PU(J-1.I)
                                                                              00006040
 3300 CONTINUE
                                                                              00006050
```

```
C
       ENERGY CONVERSION TERM IN THERMODYNAMIC EQUATI' 1.
 C
                                                                            00006060
 C
       SIGMA*P*ALPHA IS NOW STORED AT PHI
                                                                            00006070
                                                                            00006080
 C
                                                                            00006090
 3310
       FXCO=0.125+DT+KAPA/RGAS
                                                                            00006100
       FXCO1=0.25+DT+KAPA/RGAS
 C
                                                                            00006110
       DO 3320 1=1.1M
                                                                            00006120
                                                                            00006130
       IP1=MOD(I,IM)+1
                                                                            00006140
       DO 3320 J=2,JMM1
       1F(MRCH.LE.2) TEMP=FXCO+(U(J+1.1.L)+DYU(J+1)+U(J.1.L)+DYU(J))
                                                                            00006150
       IF (MRCH. E0.3) TEMP=FXCO1+U(J+1.1.L)+DYU(J+1)
                                                                            00006160
       1F(MRCH.EO.4) TEMP=FXCO1*U(J.1.L)*DYU(J)
                                                                           00006170
                                                                           00006180
3320
       PUIJ. II = TEMP
                                                                           00006190
C
       CALL AVRX(11)
                                                                           00006200
                                                                           01290000
C
                                                                           00006220
       DO 3330 1=1.IM
       IP1=MOD(I.IM)+1
                                                                           00006230
                                                                           00006240
       IM1 = MOD(I+1MM2+1M)+1
                                                                           00006250
      DO 3325 J=2,JMM1
      PU(J.1)=PU(J.1)*(PH1(J.1P1)+PH1(J.1))*(P(J.1P1)-P(J.1))
                                                                           00006260
      TT(J.1P1.L)=TT(J.1P1.L)+PU(J.1)
                                                                           00006270
3325
      TT(J,1,L)=TT(J,1,L)+PH(J,1)
                                                                           00006280
      DO 3330 J=2,JM
                                                                           00006290
      IF(MRCH.LE.2) TEMP=FXCO+DXU(J)+(V(J.1.L)+V(J.1MI.L))
                                                                           00006300
      1F(MRCH.EQ.3) TEMP=FXCO1+DXU(J)+V(J.1.L)
                                                                           00006310
      IF(MRCH.EQ.4) TEMP=FXC(1)*DXU(J)*V(J.IM1.L)
                                                                           00006320
      TEMP=TEMP+(PHI(J.I)+PHI(J-1.1))+(P(J.I)-P(J-1.I))
                                                                           00006330
                                                                           00006340
      TT(J,1,L)=TT(J,1,L)+TEMP
 3330 TT(J-1+1+L)=TT(J-1+1+L)+TFMP
                                                                           00006350
 3340 CUNTINUE
                                                                           00006360
C
                                                                           00006370
      THIS IS THE END OF FORWARD OR CENTERED TYPE OF TIME EXTRAPOLATION 00006390
C
```

```
C
  C
        ADJUSTMENT AT THE POLES
                                                                            00006400
                                                                            00006410
        DO 3415 L=1.8
                                                                            00006420
        IF(L.GT.1.AND.L.LT.6) GO TO 3415
                                                                            00006430
        PB1=0.
                                                                            00006440
        P82=0.
                                                                            00006450
       DO 3405 1=1.1M
                                                                            00006460
       PB1=PB1+OT(1+I+L)
                                                                            00006470
 3405
       PR2=PR2+OT(JM.1.L)
                                                                            00006480
       PB1=PB1/FIM
                                                                            00006490
       PH2=PB2/FIM
                                                                            C.006500
       DO 3410 I=1.IM
                                                                            00006510
       OT(1.1.L)=PB1
                                                                           00006520
 3410
       QT(JM,I,L)=PB2
                                                                           00006530
 3415 CONTINUE
                                                                           00006540
  3430 03T(JM.1)=P82
                                                                           00006550
                                                                           00006560
       RETURN TO UNWEIGHTED VARIABLES
 C
                                                                           00006570
C
                                                                           00006580
       DO 3460 I=1.IM
                                                                           00006590
       DO 3460 J=1.JM
                                                                           00006600
       FD(J.1)=PT(J.1)+DXYP(J)
                                                                           00006610
 3460 Q3T(J.1)=Q3T(J.1)/FD(J.1)
                                                                           00006620
      DO 3470 L=1.2
                                                                           00006630
      DO 3470 I=1.IM
                                                                           00006640
      IP1=MOC(I+IM)+1
                                                                           00006650
      DO 3465 J=1.JM
                                                                          00006660
 3465 TT(J.I.L)=TT(J.I.L)/FD(J.I)
                                                                          00006670
      DO 3470 J=2.JM
                                                                          00006680
      FDU=0.25*(FD(J.1)+FD(J.1P1)+FD(J-1.1)+FD(J-1.1P1))
                                                                          00006690
      IF (J .EO. 2) FDU=0.25*(FD(2.1)+FD(2.1P1))+FD(1.1)
                                                                          00006700
      IF (J .EO. JM) FDU=0.25*(FD(JM-1.1)+FD(JM-1.1P1))+FD(JM.1)
                                                                          00006710
      UT(J.I.L)=UT(J.i.L)/FDU
                                                                          00006720
 3470 VT(J.I.L)=VT(J.I.L)/FDU
                                                                          00006730
      RETURN
                                                                          00006740
C
                                                                          00006750
         END
                                                                          00006760
                                                                          00006770
```

```
SUBROUTINE
                                                                            00006780
                     AVRX(K)
                                                                            00006790
 // DD DISP=OLD. DSN=MFS727. AHN. COMMON
                                                                            00006800
 11
                                                                            00006810
 C
        THIS SUBROUTINE USES UT(1+1+1) AS A WORKING SPACE
                                                                            05490000
                                                                            00006830
       JMM1=JM-1
                                                                            00006840
       1MM2=1M-2
                                                                            00006850
                                                                            00006860
       JE=JM/2+1
       DEFF=DYP(JE)
                                                                            00006870
       DO 150 J=2.JMM1
                                                                            00006480
       DRAT = DEFF/DXP(J)
                                                                            00006890
       IF (DRAT .LT. 1.) GO TO 150
                                                                            00006900
                                                                            00006910
       ALP=0.125+(DRAT-1.)
       NM=DRAT
                                                                            00006420
       FNM=NM
                                                                            00006930
       ALPHA-ALP/FNM
                                                                            30006940
       DO 150 N=1.NM
                                                                            00006950
       DO 120 1=1.1M
                                                                           00006960
       1P1=MOD(1.1M)+1
                                                                           00006970
       1+1M1.SMM1+1)GOM=1M1
                                                                           00006980
      UT(1.1.11=OT(J.1.K)+ALPHA+(OT(J.1P1.K)+OT(J.1M1.K)-2.*OT(J.1.K))
 120
                                                                           00006990
       DO 130 1=1.1M
                                                                           00007000
 130
      OT(J.1.K)=UT(1.1.1)
                                                                           00007010
150
C
      CONTINUE
                                                                           00007020
                                                                           00007030
      FETURN
                                                                           00007040
      E ND
                                                                           00007050
                                                                           00007060
```

```
SUBROUTINE
                                                                           00007070
                       COMP3
                                                                           00007080
 /+
                                                                           00007090
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                           00007100
 11
             DD
                                                                           00007110
       EQUIVALENCE (KKK,XXX)
                                                                           00007120
       LOGICAL NODUT, ICE, LAND, OCEAN, SNOW, KEY
                                                                           00007130
 C
                                                                           00007140
       TRANS(X)=1./(1.+1.75*X**.416)
                                                                           00007150
       TRSW(X)=1.-.271+X++.303
                                                                           00007160
 C
                                                                           00007170
       JMM1 = JM-1
                                                                           00007180
       IMM2=1M-2
                                                                           00007190
       JMM2=JM-2
                                                                           00007200
       1H=1M/2+1
                                                                           00007210
       FIM=IM
                                                                           00007220
      SIG1=SIG(1)
                                                                           00007230
       $163=$16(2)
                                                                           00007240
      DS1G=S1G3-S1G1
                                                                           00007250
C
                                                                           00007260
      GWM=30.
                                                                          00007270
      DTC3=FLOAT(NC3)+DT
                                                                          00007280
      RCNV=DTC3/TCNV
                                                                          00007290
      CLH=580./.24
                                                                          00007300
      P10K=1000.++KAPA
                                                                          00007310
      CT1=.005
                                                                          00007320
      CT1D=8.64E4+CT1
                                                                          00007330
      HICE=300.
                                                                          00007340
      TIGE=273.1
                                                                          00007350
C
                                                                          00007360
      PM=PSL-PTROP
                                                                          00007370
      CDE=GRAV+100./10.5+PM+1000.+0.24)
                                                                          00007380
      CDE1=COE+DTC3/(24.+3600.)
                                                                          00007390
      SCALEU=COE+100.
                                                                          00007400
      TSPD=DAY/DTC3
                                                                          00007410
      SCALEP=TSPD+.5+(10./GRAV)+100.
                                                                          00007420
      CONRAD=180./PI
                                                                          00007430
      CNRX=CONRAD+.01
                                                                          00007440
      FSDEDY=SDEDY
                                                                          00007450
      SNOWN= (60.-15.+COS(.9863+(FSDEDY-24.668)/CDNRAD))/CONRAD
                                                                          00007460
      SNOWS =- 60. /CDNRAD
                                                                          00007470
                                                                          00007480
C
      SURFACE WIND MAGNITUDE
                                                                          00007490
                                                                          00007500
     DO 10 1=1.1M
                                                                          00007510
      00 10 J=2,JM
                                                                          00007520
     US=2.*(SIG3+U(J,1,2)-SIG1+U(J,1,1))+0.7
                                                                          00007530
      VS=2.*(S1G3+V(J.1.2)-SIG1+V(J.1.1))+0.7
                                                                          00007540
     FD(J,1)=US+US + VS+VS
                                                                          00007550
      WMAG1=SQRT(.5+(FD(2:1)+FD(2.1H)))
                                                                          00007560
     WMAGJM=SQRT(.5+(FD(JM.1)+FD(JM.1H)))
                                                                          00007570
```

```
C
                                                                            00007580
C
    RADIATION CONSTANTS
                                                                            00007590
C
                                                                            00007600
      SO=2880./RSOIST
                                                                            00007610
      ALC1=.7
                                                                            00007620
      ALC2 = . 6
                                                                            00007630
      ALC3=.6
                                                                            00007640
      STB0=1.171E-7
                                                                            00007650
      EFVC1=65.3
                                                                            00007660
      EFVC2=65.3
                                                                            00007670
      EFVC3=7.6
                                                                            00007680
      CPART=.5+1.3071E7
                                                                            00007690
      ROT = TOFOAY/ROTPER #2.0 PI
                                                                           00007700
                                                                           00007710
C
      HEATING LOOP
                                                                           00007720
C
                                                                           00007730
      00 370 I=1.IM
                                                                           00007740
      IM1=MOO(I+IMM2,IM)+1
                                                                           00007750
      IP1=MOO(I,IM)+1
                                                                           00007760
      FIM1=1-1
                                                                           00007770
      HACOS=COSO+COS(ROT+FIM1+OLON)
                                                                           00007780
      ON 360 J=1,JM
                                                                           00007790
      COSZ=SINL(J)+SINO+COSL(J)+HACOS
                                                                           00007800
C
                                                                           00007810
      SURFACE CONDITION
                                                                           00007820
C
                                                                           00007830
      TGOO=TOPOG(J,1)
                                                                           00007840
      OCEAN=TGOO.GT.1.
                                                                           00007850
      ICE=TGOO.LF.-9.9F5
                                                                           00007860
      LAND=.NOT.(ICE.OR.OCEAN)
                                                                           00007870
      SNOW=LAND.AND.(LAT(J).GE.SNOWN.OR.LAT(J).LE.SNOWS)
                                                                           00007880
      LANO=LANO.ANO..NOT.SNOW
                                                                           00007890
      IF (.NOT.GSEAN) ZZZ=VPHI4(J.1)/GRAV
                                                                           00007900
C
      ORAG COEFFICIENT
                                                                           00007910
      IF (J .EO. 1) WMAG=WMAG1
                                                                           00007920
      IF (J .EO. JM) WMAG=WMAGJM
                                                                           00007930
      IF (J.NE.1.ANO.J.NE.JM) WMAG=SQRT(.25+(FO(J.1)+FO(J+1.1)
                                                                           00007940
       +FD(J, IM1)+FO(J+1, IM1)))
                                                                           00007950
     CD = .002
                                                                           00007960
      IF (.NOT.DCEAN) CO=CD+0.006*ZZZ/5000.
                                                                           00007970
      IF (OCEAN) CD = AMIN1((1.0+.07*WMAG)*.001,.0025)
                                                                           00007980
      CS = C0 * 100.
                                                                           00007990
      CS4 = .24*CS*24.*3600.
                                                                           00008000
      FK1 = CD + (10. + GRAV) / (DSIG + PM)
                                                                           00008010
```

```
C
                                                                            00008020
C
       PRESSURES
                                                                            00008030
C
                                                                            00008040
       SP=P(J.I)
                                                                            00008050
       COLMR = PM/SP
                                                                            00008060
       P4=SP+PTROP
                                                                            00008070
       P4K=P4**KAPA
                                                                            00008080
       PL1=SIG1+SP+PTROP
                                                                            00008090
       PL2=.5+SP+PTROP
                                                                            00008100
       PL3=SIG3+SP+PTROP
                                                                            00008110
       PL1K=PL1++KAPA
                                                                            00008120
      PL3K=PL3++KAPA
                                                                            00008130
       PL2K=PL2++KAPA
                                                                            00008140
      PTRK=PTROP++KAPA
                                                                            00008150
      DPLK=PL3K-PL1K
                                                                            00008160
C
                                                                            00008170
C
    TEMPERATURES AND TEST FOR DRY-ADIABATIC INSTABILITY
                                                                            00008180
C
                                                                            00008190
      T1=T(J.1.1)
                                                                            00008200
      T3=T(J,1,2)
                                                                            00008210
      THL1=T1/PL1K
                                                                            00008220
      THL3=T3/PL3K
                                                                            00008230
      IF (THL1 .GT. THL3) GO TO 310
                                                                            00068240
      XX1=(T1+T3)/(PL1K+PL3K)
                                                                            00008250
      T1=XX1+PL1K
                                                                            00008260
      T3=XX1+PL3K
                                                                            00008270
      T(J,I,1)=T1
                                                                            00008280
      T(J,1,2)=T3
                                                                           00008290
      THL1=T1/PL1K
                                                                           00008300
      THL3=T3/PL3K
                                                                           00008310
C
                                                                           00008320
Č
       MOISTURE VARIABLE.
                                                                           00008330
C
                                                                           00008340
 310
      ES1=10.0++(8.4051-2353.0/T1)
                                                                           00008350
      ES3=10.0**(8.4051-2353.0/T3)
                                                                           00008360
      P1CB=.1*PL1
                                                                           00008370
      P3CB=.1*PL3
                                                                           00008380
      P4CB=.1+P4
                                                                           00008390
      QS1=.622+ES1/(P1CB-ES1)
                                                                           00008400
      QS3=.622*ES3/(P3CB-ES3)
                                                                           00008410
      GAM1=CLH+QS1+5418./T1++2
                                                                           00008420
      GAM3=CLH+QS3+5418./T3++2
                                                                           00008430
      03R=03(J,I)
                                                                           00008440
      RH3=03R/053
                                                                           00008450
C
                                                                           00008460
      TEMPERATURE EXTRAPOLATION AND INTERPOLATION FOR RADIATION
                                                                           00008470
C
                                                                           00008480
      ATEM=(THL3-THL1)/DPLK
                                                                           00008490
      BTEM=(THL1*PL3K-THL3*PL1K)/DFLK
                                                                           00008500
      TTROP=(ATEM+PTRK+BTEM)+PTRK
                                                                           00008510
      T2=(ATEM+PL2K+BTEM)+PL2K
                                                                           00008520
```

```
C
                                                                            00008530
 C
       GROUND TEMPERATURE AND WETNESS
 C
                                                                            00008540
                                                                            00008550
       TG=TGOO
                                                                            00008560
       WET=1.0
                                                                            00008570
       IF (.NOT.OCEAN) TG=GT(J.I)
                                                                            00008580
       IF (LAND) WET=GW(J.I)
 C
                                                                            00008590
 C
     LARGE SCALE PRECIPITATION
                                                                            00008600
                                                                            00008610
                                                                            00008620
       PREC=O.
                                                                            00008630
       IF (03R.LE.0S3) GO TO 1060
       PREC=(Q3R-QS3)/(1.+GAM3)
                                                                            00008640
                                                                            00008650
       T3=T3+CLH*PREC
                                                                            00008660
       THL3=T3/PL3K
       Q3R=Q3R-PREC
                                                                            00008670
 C
                                                                           00008680
C
                                                                           00008690
    CONVECTION
C
                                                                           00008700
  1060 TETA1=THL1*P10K
                                                                           00008710
                                                                           00008720
       TETA3=THL3+P10K
       SS3 = TETA3*P4K/P10K
                                                                           00008730
      SS2 = SS3 + 0.5*(TETA1-TETA3)*PL2K/Pl0K
                                                                           00008740
      SS1 = SS2 + 0.5*(TETA1-TETA3)*PL2K/Pl0K
                                                                           00008750
                                                                           00008760
      HH3 = SS3 + CLH+Q3R
      HH35 = SS3 + CLH+0S3
                                                                           00008770
                                                                           00008780
      HH1S = SS1 + CLH+QS1
                                                                           00008790
C
    MIDDLE LEVEL CONVECTION
                                                                           00008800
C
                                                                           00008810
                                                                           00008820
      C1 = 0.
      C3 = 0.
                                                                           00008830
      EX = HH3 - HH1S
                                                                           00008840
      IF (EX.LE.O.) GO TO 1065
                                                                           00008850
      C1 = RCNV + EX/(2.+GAM1)
                                                                          00008860
      C3 = C1*(1.+GAM1)*(SS2-SS3)/(EX+(1.+GAM1)*(SS1-SS2))
                                                                          00008870
C
                                                                          08880000
C
    PREPARATION FOR AIR-EARTH INTERACTION
                                                                          00008890
                                                                          00008900
                                                                          00008910
1065 ZL3 = 2000.
      WINDF=2.0+WMAG
                                                                          00008920
      DRAW=CD+WINDF
                                                                          00008930
                                                                          00008940
      EDV=ED/ZL3+WMAG/10.
                                                                          00008950
```

```
C
                                                                           00008960
C
    DETERMINATION OF SURFACE TEMPERATURE
C
                                                                           00008970
                                                                           00008980
C
                                                                           00億億8990
 1070 RH4=2. +WET+RH3/(WET+RH3)
                                                                           00009000
      EG=10.**(8.4051-2353./TG)
                                                                           00009010
      EG= AMIN1(EG,P4CB/1.662)
                                                                           00009020
      QG=.622 +EG/(P4CB-EG)
                                                                           00009030
      DQG=5418.+QG/TG++2
                                                                           00009040
      HHG=TG+CLH+QG+WET
                                                                           00009050
      EDR = EDV/(EDV+DRAW)
                                                                           00009060
      HH4=EDR+HH3+(1.-EDR)+HHG
                                                                           00009070
      GAMG=CLH+DOG
                                                                          00009080
      T4=(HH4-RH4+(CLH+QG-GAMG+TG))/(1.+RH4+GAMG)
                                                                          00009090
      IF (T4*PloK/P4K.GT.TETA3) T4=TETA3*P4K/PloK
                                                                           00009100
      Q4=RH4+(QG+DQG+(T4-TG))
                                                                          00009110
      HH4=T4+CLH+Q4
                                                                          U0009120
                                                                          00009130
C
    PENETRATING AND LOW-LEVEL CONVECTION
                                                                          00009140
C
                                                                          00009150
      PC1=0.
                                                                          00009160
      PC3=0.
                                                                          00009170
     EX=0.
                                                                          00009180
      IF (HH4 .LE. HH3S) GO TO 1077
                                                                          00009190
     IF (HH3 .GT. HH1S) GO TO 1077
                                                                          00009200
     EX = HH4-HH3S
                                                                          00009210
     HH4P = HH4
     HH4 = HH35
                                                                          00009220
                                                                          00009230
     IF (HH4P .LT. HH1S) GO TO 1076
                                                                          00009240
     ETA = 1.
                                                                          00009250
     TEMP1 = ETA+((HH3S-HH1S)/(1.+GAM1)+SS1-SS2)
                                                                          00009260
     TEMP2 = ETA+(SS2-SS3) + (SS3-T4)
                                                                          00009270
     TEMP . EDR+TEMP1+(1.+GAM3)+TEMP2
                                                                          00009280
     IF (TEMP .LT. ,001) TEMP=.001
                                                                          00009290
     CONVP - RCNV+EX/TEMP
                                                                          00009300
     PC1 = CONVP*TEMP1
                                                                          00009310
     PC3 = CONVP + TEMP2
                                                                          00009320
1076 T4=T4-EX/(1.+RH4+GAMG)
                                                                          00009330
     Q4=(HH4-T4)/CLH
                                                                          00009340
                                                                         00009350
                                                                         00009360
1077 RO4=P4CB/(RGAS+T4)
                                                                         00009370
     CSEN=CS4+RO4+WINDF
                                                                         00009380
     CEVA=CS+RO4+WINDF
                                                                         00009390
```

```
CCC
                                                                              00009400
     CLOUDINESS
                                                                              00009410
                                                                              00009420
       ICLOUD=1
                                                                              00009430
       CL =0.
                                                                              00009440
       CL1=0.
                                                                              00009450
       CL2=0.
                                                                              00009460
       CL3=0.
                                                                              00009470
       CLT=0.
                                                                              00009480
       CL = AMIN1 (-1.3+2.6+RH3.1.)
                                                                              00009490
       IF (C1.GT.O..OR.PC1.GT.O.) CL1=CL
                                                                              00009500
       IF (PREC.GT.O..ANO.CL1.FQ.O.) CL2=1.
                                                                              00009510
       IF (EX.GT.O..AND.PC1.EQ.O.) CL3=CL
                                                                              00009520
00000000000000000
                                                                              00009530
                                                                              00009540
                                                                              60009550
                                                                              00009560
                                                                              00009570
                                                                              00009580
                                                                              00009590
                                                                              00009600
                                                                              00009610
                                                                              00009620
                                                                              00009630
                                                                              00009640
                                                                              00009650
                                                                              00009660
             CLI
                             CLZ
                                             CL3
                                                                              00009670
                                                                              00009680
                                                                              00009690
      CL=AMAX1(CL1,CL2,CL3)
                                                                              00009700
      IF (CL .GE. 1.) ICLOUD=3
                                                                              00009710
      IF ICL .LT. 1. .AND. CL .GT. O.) ICLNID=2
                                                                             00009720
C
                                                                             00009730
      ICLOUD=1 CLEAR. ICLOUD=2 PARTLY CLOUDY. ICLOUD=3 OVERCAST
                                                                             00009740
```

```
C
      LONG WAVE RADIATION
                                                                          00009750
                                                                          00009760
 1080 Q3RB=AMAX1(Q52.1.E-5)
                                                                          00009770
      VAK=2.+ALOG(1.7188E-6/Q3RB)/ALOG(120./PL3)
                                                                          00009780
      TEM1=.00102+PL3++2+Q3RB/VAK
                                                                          00009790
      TEM2=TEM1+(P4/PL3)++VAK
                                                                          00009800
      EFV3=TEM2-TEM1
                                                                          00009810
      EFV2=TEM2-TEM1+(PL2/PL3)++VAK
                                                                          00009820
      EFV1=TEM2-TEM1+(PL1/PL3)++VAK
                                                                          00009830
      EFVT=TEM2-TEM1+(PTROP/PL3)++VAK
                                                                          00009840
      EFV0=T&M2-TEM1+(120./PL3)++VAK+2.526E-5
                                                                          00009850
      BLT=STBD+TTRDP++4
                                                                          00009860
      BL1=STB()+T1++4
                                                                          00009870
      BL2=STBO+T2++4
                                                                          00009880
      BL3=STBO+T3++4
                                                                          00009890
      BL4=STBO+TG++4
                                                                          00009900
      LONG WAVE RADIATION
C
                                                                          00009910
      ROC=O.
                                                                          00009920
      R2C=0.
                                                                          00009930
      R4C=0.
                                                                          00009940
      URT=BLT+TRANS(EFVO-EFVT)
                                                                          00009950
      UR2=BL2+TRANS(EFV0-EFV2)
                                                                          00009960
      GO TO (1090,1090,2000), ICLOUD
                                                                          00009970
1090 ROO=0.82+(URT+(BL4-BLT)+(1.+TRANS(EFVT))/2.)
                                                                          00009980
     R20=0.736=(UR2+(BL4-BL2)+(1.+TRANS(EFV2))/2.)
                                                                          00009990
     R40=BL4=(0.6=SQRT(TRANS(EFVO))-0.1)
                                                                          00010000
      IF (ICLOUD .EQ. 1) GO TO 2015
                                                                          00010010
2000 IF (CL2 .LE. O.) GO TO 2004
                                                                          00010020
     CLT=CL2
                                                                         00010030
     ROC=0.82+(URT+(BL2-BLT)+(1.+TRANS(EFVT-EFV2))/2.)+CLT
                                                                         00010040
     R2C=0.736+UR2+CLT
                                                                         00010050
     R2C=.5*R2C
                                                                         00010060
     GO TO 2006
                                                                         00010070
2004 IF (CL3 .LF. 0.) GO TO 2006
                                                                         00010080
     CLT=CL3
                                                                         00010090
     ROC=0.82=(URT+(BL3-HLT)=(1.+TRANS(EFVT-EFV3))/2.)+CLT
                                                                         00010100
     R2C=0.736+(UR2+(BL3-BL2)+(1.+TRANS(FFV2-EFV3))/2.)+CLT
                                                                         00010110
2006 IF (CL1 .LF. 0.) GO TO 2010
                                                                         00010120
        CLM=AMAX1(CLT-CL1.0.)
                                                                         00010130
   IN PRESENT VERSION, CLM AND THIS TEM ARE ALWAYS ZERO
                                                                         00010140
        TEM=0.
                                                                         00010150
        IF (CLT .GT. 0.001) TEM=CLM/CLT
                                                                         00010160
        ROC=0.82=(URT+(BL1-BLT)+(1.+TRANS(FFVT-EFV1))/2.)+CL1+ROC+TEM
                                                                         00010170
        R2C=R2C+TEM
                                                                         00010180
2010 R4C=0.85+1.25+.75+TRANS(EFV3))+(BL4-BL3)+CL
                                                                         00010190
2015 RO#ROC+(1.-CL)#ROO
                                                                         00010200
     R2=R2C+(1.-CL)+R20
                                                                         00010210
     R4=R4C+(1.-CL)+R40
                                                                         00010220
     DIRAD=4. +STBO+TG++3
                                                                         00010230
```

```
00010240
C
                                                                                00010250
C
      SURFACE ALBEDO
                                                                                00010260
                                                                                00010270
      IF (COSZ .LE. .01) GO TO 340
      SCOSZ=SO+COSZ
                                                                                00010280
                                                                                00010290
      ALS=.07
                                                                                00010300
      IF (OCEAN) GO TO 335
                                                                                00010310
      ALS=.14
      IF (LAT(J) .LT. SNOWN) GO TO 327 CLAT=(LAT(J)-SNOWN)*CONRAD
                                                                                00010320
                                                                                00010330
                                                                                00010340
      GO TO 330
      IF (LAT(J) .GT. SNOWS) GO TO 328
CLAT=(SNOWS-LAT(J)) +CONRAD
 327
                                                                                00010350
                                                                                00010360
      ALS=.45+(1.+(CLAT-10.)++2)/((CLAT-30.)++2+(CLAT-10.)++2)
                                                                                00010370
                                                                                00010380
      GO TO 335
                                                                                00010390
      IF (LAND) GO TO 335
 328
                                                                                00010400
      CLAT=0.0
                                                                                00010410
 330
      ALS=.4+(1.+((CLAT-5.)++2))/((CLAT-45.)++2+((CLAT-5.)++2))
C
                                                                                00010420
C
                                                                                00010430
      SOLAR RADIATION
C
                                                                                00010440
                                                                                00010450
 335
      ALAO=AMIN1(1.,.085-.247+ALOG10(COSZ/COLMR))
                                                                                00010460
      SA=.349*SCOSZ
      SS=SCOSZ-SA
                                                                                00010470
      ASOT=SA+TRSW((EFVO-EFVT)/COSZ)
                                                                                00010480
      AS2T=SA+TRSW((EFVO-FFV2)/COSZ)
                                                                                00010490
                                                                                00010500
      FS2C=0.
      F$4C=0.
                                                                                00010510
      S4C=0.
                                                                                00010520
                                                                                00010530
      GO TO (336,336,337), ICLOUD
```

```
CLEAR
                                                                           00010540
 336 FS20=AS2T
                                                                           00010550
       FS40=SA+TRSW(EFVO/COSZ)
       $40=(1.-ALS)+(F$40+(1.-ALAO)/(1.-ALAO*ALS)*$5)
                                                                           00010560
                                                                           00010570
       IF (ICLOUD .EQ. 1) GO TO 341
                                                                           00010580
    LARGE SCALE CLOUD
 337 IF (CL2 .LE. 0.) GO TO 338
                                                                           00010590
                                                                           00010600
      CLT=CL2
                                                                           00010610
      FS2C=AS2T+CLT
      TEMS=SA+(1.-ALC2)+TRSW((EFV0-EFV2)/COSZ+1.66+(EFVC2+EFV3))
                                                                           00010620
      FS4C=(TEMS+ALC2+AS2T)+CLT
                                                                           00010630
      ALAC=ALC2+ALAO-ALC2+ALAO
                                                                          00010640
      S4C=(1.-ALS)+(TEMS/(1.-ALC2+ALS)+(1.-ALAC)/(1.-ALAC+ALS)+SS)+CLT
                                                                          00010650
                                                                          00010660
      GO TO 339
                                                                          00010670
    LOW LEVEL CLOUD
 338 IF (CL3 .LE. O.) GO TO 339
                                                                          00016680
      CLT=CL3
                                                                          00010690
                                                                          00010700
      FS2C=AS2T+CLT
                                                                          00010710
      TEMU=(EFVO-EFV3)/COSZ
      TEMS=SA+(1.-ALC3)+TRSW(TEMU+1.66+(EFVC3+EFV3))
                                                                          00010720
      FS4C=(TEMS+ALC3+SA+TRGH(TEMU))+CLT
                                                                          00010730
                                                                          00010740
      ALAC=ALC3+ALAO-ALC3+ALAO
      S4C=(1.-ALS)+(TEMS/(1.-ALC3+ALS)+(1.-ALAC)/(1.-ALAC+ALS)+SS)+CLT
                                                                          00010750
   THICK CLOUD
                                                                          00010760
339 IF (CL1 .LE. 0.) GO TO 341
                                                                          00010770
      CLM-AMAX1(CLT-CL1.0.)
                                                                          00010780
   IN PRESENT VERSION. CLM AND THIS TEM ARE ALWAYS ZERO
                                                                          00010790
                                                                          00010800
      TEM=0.
      IF (CLT .GT. O.) TEM=CLM/CLT
                                                                          00010810
      TEMU=(EFVO-EFV1)/COSZ
                                                                          00010820
                                                                         00010830
      TEMB=ALC1+TRSW(TEMU)+SA+CL1
     FS2C=SA+(1.-ALC1)+TRSW(TEMU+1.66+FFVC1)+CL1+TEMB+FS2C+TEM
                                                                          00010840
     TEMS=SA+(1.-ALC1)+TRSW(TEMU+1.66+(EFVC1+EFV3))
                                                                         00010850
     FS4C=TEMS+CL1+TEMB+FS4C+TEM
                                                                          00010860
                                                                         00010870
     ALAC=ALC1+ALAO-ALC1+ALAO
     $4C=(1.-AL$)+(TEM$/(1.-ALC1+AL$)
                                                                         00010880
    X + (1.-ALAC)/(1.-ALAC+ALS)+SS)+CL1+S4C+TEM
                                                                         00010890
   MEAN CONDITION
                                                                         00010900
341 FS2=FS2C+(1.-CL)*FS20
                                                                         00010910
     FS4=FS4C+(1.-CL)*FS40
                                                                         00010920
     $4=$4C+(1.-CL)+$40
                                                                         90010930
                                                                         00010940
     AS1=ASOT-FS2
     AS3=FS2-FS4
                                                                         00010950
     GO TO 345
                                                                         00010960
340
    54=0.0
                                                                         00010970
     AS3=0.0
                                                                         00010980
     AS1=0.0
                                                                         00010990
                                                                         00011000
```

```
C
                                                                              00011010
C
     COMPUTATION OF GROUND TEMPERATURE
                                                                              00011020
C
                                                                              00011030
 345
       TGRETG
                                                                              00011040
       IF (OCEAN) GO TO 347
                                                                              00011050
       BRA0=54-R4
                                                                              00011060
       TEM=0.
                                                                              00011070
       IF (ICE.ANO.ZZZ.LT.O.1) TEM=CTID/HICE
                                                                              00011080
       A1=CSEN+(T4+CLH+(Q4+HET+(DDG+TG-DG)))
                                                                             00011090
       A2=BRAD+4. +BL4+TEM+TICE
                                                                              00011100
       B1=CSEN+(1.+CLH+OOG+WET)
                                                                             00011110
       B2=DIRAD+TEM
                                                                             00011120
       TGR=(A1+A2)/(B1+B2)
                                                                             00011130
       IF (LAND.OR.TGR.LT.TICE) GO TO 346
                                                                             00011140
       TGR=TICE
                                                                             00011150
 346
      DR4=D1RAD+(TGR-TG)
                                                                             00011160
      R4=R4+DR4
                                                                             00011170
      R2=R2+.8+(1.-CL)+TRANS(EFV2)+OR4
      RO=RO+.8*(1.-CL)*TRANS(EFVT)*DR4
                                                                             00011180
                                                                             00011190
 347
      GT(J.1)=TGR
                                                                             00011200
                                                                             00011210
C
    SENSIBLE HEAT (LY/DAY) AND EVAPORATION (GM/CH++2/SEC)
                                                                             00011220
C
                                                                             00011230
      E4=CEVA+(WET+(OG+DOG+(TGR-TG))-04)
                                                                             00011240
      F4=CSEN+(TGR-T4)
                                                                             00011250
      FK=RD4+FK1+WINOF
                                                                             00011260
                                                                             00011270
C
      TOTAL HEATING AND MOISTURE BUDGET
                                                                             00011280
                                                                             00011290
      QN=(C1+C3+PC1+PC3)/CLH+PRFC-2.*E4*DTC3*GRAV/(SP*10.)
                                                                             00011300
      03(J.1)=03(J.1)-0N
                                                                             00011310
      IF (.NOT.LAND) GO TO 350
      RUNDFF=0.
                                                                             00011320
                                                                             00011330
      IF (QN.GT.O. .AND. WET.LT.1.) RUNDFF=.5*WET
      IF (QN.GT.O. .AND. WET.GE.1.) RUNOFF=1.
WET = GW(J.1)+(1.-RUNOFF)+ON+5.*SP/GRAV/GWM
                                                                            00011340
                                                                             00011350
                                                                             00011360
      1F (WET.GT.1.) WET = 1.
                                                                            00011370
      IF (WET.LT.O.) WET = O.
                                                                            00011380
350 GW(J.I) = WET
                                                                            00011390
                                                                            00011400
      IF (Q3(J.1).LT.O.) Q3(J.1)=0.
                                                                            00011410
      IF (KEY(31)) GO TO 360
                                                                            00011420
     H1=(AS1+R2-R0)+C0E1+U0LMR+C1+PC1
                                                                            00011430
     H3=(AS3+R4-R2+F4)+COE1+COLMR+C3+PC3+PREC+CLH
                                                                            00011440
     H(J,1,1)=0.5+(H1+H3)
                                                                            00011450
     TEMP=0.5+(H1-H3)
                                                                            00011460
     T(J.1.1)=T(J.1.1)+TEMP
                                                                            00011470
     T(J.1.2)=T(J.1.2)-TEMP
                                                                            00011480
```

```
C
  C
      SURFACE FRICTION
                                                                              00011490
  C
                                                                              00011500
   352
         IF (J .EQ. 1) GO TO 358
                                                                             00011510
        COLMR=4.*PM/(P(J.1)+P(J.1P1)+P(J-1.1)+P(J-1.1P1))
                                                                             00011520
                                                                             00011530
        K1=2+K
                                                                             00011540
        K2=K1+1
                                                                             00011550
        TEMP=0(J,1,K1)-0(J,1,K2)
                                                                             00011560
        O(J.1.K1)=O(J.1.K1)-FM+TEMP+COLMR++2+DTC3
                                                                             00011570
        Q(J.1.K2)=Q(J.1.K2)+(FM+TEMP+COLMR-FK+(Q(J.1.K2)-.5+TEMP)+.7)
                                                                             00011580
                                                                             00011590
 C
                                                                             00011600
    358 CONTINUE
                                                                             00011610
 C358 1F (NOOUT) GO TO 360
                                                                             00011620
                                                                             00011630
 C
     PACK FOR DUTPUT
                                                                             00011640
 C
                                                                            00011650
       WW=SD(J.1)+3600./(2.0+DXYP(J))
                                                                            00011660
       SCALE=SCALEU+COLMR
                                                                            00011670
       KKK=IPK(IF1X(AS1+SCALF).IF1X(AS3+SCALE))
                                                                            00011680
       TT(J.1.1)=XXX
                                                                            00011690
       KKK=1PK(1F1X((R2-R0)+SCALF)+1F1X((R4-R2)+SCALE))
                                                                            00011700
       VT(J.1.2)=XXX
                                                                            00011710
       KKK=IPK(IFIX(F4),IFIX(E4+100.+3600.+24.))
                                                                            00011720
       TT(J.1.2)=XXX
                                                                            00011730
       KKK=IPK(IFIX(T4+10.).1F1X(PREC+SCALEP+SP))
                                                                            00011740
       XXX=(1,1) TEQ
                                                                            00011750
      KKK=IPK(IF1X(EX+10.).IFIX((C1+C3+PC1+PC3)*SP*SCALEP/CLH))
                                                                            00011760
                                                                            00011770
      KKK=IPK(IFIX(H1+100.+DAY/DTC3).IFIX(H3+100.+DAY/DTC3))
                                                                            00011780
                                                                            00011790
      KKK=IPK(1FIX(54/10.).1F1X(WW+100.))
                                                                            00011800
      SD(J+1)=XXX
                                                                           00011810
 360
      CONTINUE
                                                                           00011820
 370
      CONTINUE
                                                                           00011830
 375
      DO 377 1=1.1M
                                                                           00011840
      DO 377 J=1,JM
                                                                           00011850
 377
      H(J.1.1)=H(J.1.1)+DXYP(J)
                                                                           00011860
                                                                           00011870
      DO 390 1=1.1M
                                                                           00011880
      1P1=MOD(1+1M)+1
                                                                           00011890
      IM1=MOD(I+IMM2,1M)+1
                                                                           00011900
      DO 380 J=2,JMM1
                                                                           00011910
     TEMP=(H(J+1.1M1.1)+2.*H(J+1.1.1)+H(J+1.1P1.1)
                                                                           00011920
       +2.0H(J,[M1,1) +4.0H(J,[,1]+2.0H(J,[P1,1]
                                                                           00011930
          +H(J-1.1M1.1)+2.*H(J-1.1)+H(J-1.1P1.1))/(16.*DXYP(J))
                                                                           00011940
     T(J,I,1)=T(J,I,1)+TEMP
                                                                          00011950
380
     T(J.1.2)=T(J.1.2)+TEMP
                                                                          00011960
     T(1+1+1)=T(1+1+1)+H(1+1+1)/DXYP(1)
                                                                          00011970
     T(1,1,2)=T(1,1,2)+H(1,1,1)/DXYP(1)
                                                                          00011980
     T(JM,I,1)=T(JM,I,1)+H(JM,I,1)/DXYP(JM)
                                                                          00011990
390
    T(JM,1,2)=T(JM,1,2)+H(JM,1,1)/DXYP(JM)
                                                                          00012000
400
     RETURN
                                                                          00012010
     END
                                                                          00012026
                                                                          00012030
```

```
UBROUTINE
                                                                            00012040
         COMP4
                                                                            00012050
1+
                                                                            00012060
// DD DISP=OLD.DSN=MFS727.AHN.COMMON
                                                                            00012070
//
             DD
                                                                            00012080
C
                                                                            00012090
                                                                            00012100
      DTC3=DT+FLOAT(NC3)
                                                                            00012110
      SIG1=SIG(1)
                                                                            00012120
      $1G3=$1G(2)
                                                                            00012130
      DSIG=SIG3-SIG1
                                                                            00012140
      JMM1=JM-1
                                                                            00012150
      JMM2=JM-2
                                                                            00012160
      IMM2=IM-2
                                                                            00012170
      FIM=IM
                                                                            00012180
      TSPD=DAY/DTC3
                                                                            00012190
      IF(A.EQ.O.) GO TO 92
                                                                            00012200
C
                                                                            00012210
      DO 25 I=1.IM
                                                                            00012720
                                                                            00012230
      DO 20 J=2,JM
 20
      PV(J,I)=DXYP(J)*P(J,I)
                                                                            00012240
 25
      PV(1,1)=DXYP(1)*P(1,1)
                                                                            00012250
C
                                                                            00012260
C
      DIFFUSION OF MOMENTUM
                                                                            00012270
                                                                            00012280
      DO 30 I=1.IM
                                                                            00012290
      IP1=MOD(I,IM)+1
                                                                            00012300
      DO 30 J=2,JM
                                                                            00012310
   30 PU(J, I) = 0, 25 + (PV(J, I) + PV(J-1, I) + PV(J, IP1) + PV(J-1, IP1))
                                                                            00012320
      DO 90 K=2,5
                                                                            00012330
      K1=K-MODIK,2)
                                                                            00012340
      FL = MOD(K,2) +2+1
                                                                            00012350
      SIGCO=FL/2.
                                                                            00012360
      DO 40 I=1.IM
                                                                            00012370
      IP1=MOD(I, IM)+1
                                                                            00012380
      DO 40 J=2,JM
                                                                            00012390
   40 PV(J,I) = SIGCO*(P(J,IP1)+P(J-1,IP1)-P(J,I)-P(J-1,I))
                                                                            00012400
                    /(P(J, IP1)+P(J-1, IP1)+P(J, I)+P(J-1, I))
                                                                            00017410
                    *(Q(J,I,K1)-Q(J,I,K1+1))
                                                                            00012420
```

```
DO 50 I=1.IM
                                                                             00012430
       IM1 = MOD(I+IMM2, IM)+1
                                                                             00012440
      DO 50 J=2.JM
                                                                             00012450
       TEMP=DTC3+(P(J+I)+P(J-1+I))+AXU(J)+DYU(J)/DXU(J)+0.5
                                                                             00012460
              *(Q(J,I,K)-Q(J,IM1,K)+PV(J,I)+PV(J,IM1))
                                                                             00012470
      Q(J,I,K)=Q(J,I,K)-TEMP/PU(J,I)
                                                                             00012480
   50 Q(J.IM1.K)=Q(J.IM1.K)+TEMP/PU(J.IM1)
                                                                             00012490
      DO 60 I=1.IM
                                                                             00012500
       IP1=MOD(I,IM)+1
                                                                             00012510
      DO 60 J=2.JM
                                                                             00012520
   60 PV(J,I)=SIGCO+(P(J,IP1)+P(J,I)-P(J-1,IP1)-P(J-1,I))
                                                                             00012530
                    /(P(J, IP1)+P(J, I)+P(J-1, IP1)+P(J-1, I))
                                                                             00012540
                    *(0(J,I,K1)-0(J,I,K1+1))
                                                                             00012550
      DO 80 I=1.IM
                                                                             00012560
      IP1=MOD(I,IM)+1
                                                                             00012570
      DO 70 J=2,JMM1
                                                                             00012580
      TEMP=DTC3+(P(J, IP1)+P(J, I))+AYU(J)+DXU(J)++3/DYU(J)+0.5
                                                                             00012590
             *((O(J+1,I,K)+PV(J+1,I))/DXU(J+1)-(O(J,I,K)-PV(J,I))/DXU(J))00012600
      Q(J+1,I,K)=Q(J+1,I,K)-TEMP/(PU(J+1,I)*DXU(J+1))
                                                                             00012610
   70 Q(J,I,K)=Q(J,I,K)+TEMP/(PU(J,I)+DXU(J))
                                                                             00012620
      TEMP=DTC3+P(JM,I)+AYU(JM)+DXU(JM)/DYU(JM)+(Q(JM,I,K)-PV(JM,I))
                                                                             00012630
      Q(JM,I,K)=Q(JM,I,K)-TEMP/PU(JM,I)
                                                                             00012640
      TEMP=DTC3+P(2,1)+AYU(2)+DXU(2)/DYU(2)+(Q(2,1,K)-PV(2,1))
                                                                             00012650
   80 Q(2,1,K)=Q(2,1,K)-TEMP/PU(2,1)
                                                                             00012660
   90 CONTINUE
                                                                             00012670
92
      CONTINUE
                                                                             00012680
C
                                                                             00012690
      SMOOTHING LAPSE RATE
                                                                             00012700
C
                                                                             00012710
99
      DO 100 I=1, IM
                                                                             00012720
      DO 100 J=1.JM
                                                                             00012730
100
      TD(J,I) = (T(J,I,2) - T(J,I,1)) + .5/P(J,I)
                                                                             00012740
      DO 110 I=1, IM
                                                                             00012750
      IM1=MOD(I+IMM2+IM)+1
                                                                             00012760
      IP1=MOD(I,IM)+1
                                                                             00012770
      DO 110 J=2,JMM1
                                                                            00012780
      TDBAR = (TD(J+1,IM1)+2.*TD(J+1,I)+
                                             TD(J+1. [P1)
                                                                             00012790
           +2.*TD(J.IM1) +4.*TD(J.I) +2.*TD(J.IP1)
+ TD(J-1.IM1)+2.*TD(J-1.I)+ TD(J-1.IP1))/16.
                                                                             00012800
                                                                            00012810
     TOSM=(TD(J.I)+(TDBAR-TD(J.I))/TSPD)*P(J.I)
                                                                            00012820
      TBAR=(T(J,I,2)+T(J,I,1))*.5
                                                                            00012830
      T(J,I,1)=TBAR-TDSM
                                                                            00012840
     T(J,1,2)=TBAR+TDSM
                                                                            00012850
     RETURN
                                                                            00012860
     END
                                                                            00012870
```

```
UBROUTINE
                                                                             00012880
           INPUT
                                                                             00012890
  // OD OISP=OLD. SN=MES727. ABN. COMMON
                                                                             00012900
  11
                                                                             00012910
              DO
  C
                                                                             00012920
        EQUIVALENCE (XXX.KKK)
                                                                            00012930
        DIMENSION C1(800). [C1(800). 1C(800). ALPH(8)
                                                                             00012940
         EQUIVALENCE (OT(1,1,10),C1(1),(C(1)), (C(1),1C(1))
                                                                            00012950
        LOGICAL JUMP
                                                                            00012960
        INTEGER KSET (32), BLANK/ 1/
                                                                            00012970
        EQUIVALENCE (XLEV. ILEV)
                                                                            00012980
 C
                                                                            00012990
 C
      INPUT PROGRAM
                                                                            00013000
 C
                                                                            00013010
                                           PING-PONG RESTART/OUTPUT OPTION 00013020
       IF (KEY(11) .OR. KEY(12)) GO TO 751
 C
       PI=3.1415926
                                                                            00013030
       SIG(1)=.25
                                                                            20013040
       SIG(2)=. 75
                                                                            00013050
                                                                            00013060
       DAYPYR=365.
                                                                            00013070
       DECMAX=23.5/180.0+P1
       ROTPER=24.0
                                                                            00013080
       EONX=173.0
                                                                            00013090
       APHEL=183.0
                                                                            09013100
       ECCN=0.0178
                                                                            00013110
 C
   HISTORY FILE
                                                                            00013120
       KTP=11
                                                                           00013130
 C
    CHECKPOINT FILE
                                                                            00013140
       LTP=1
                                                                           00013150
    DATA CARD IMAGE FILE
                                                                           00013160
C
       1 NU=5
                                                                           00013170
   OUTPUT (MAP) STREAM
C
                                                                           00013180
       MTP=6
                                                                           00013190
C (1)
                                                                           00013200
      READ (1NU,50) 1D, XLABL
                                                                           00013210
C
                                                                           00013220
  (2)
C
                                                                           00013230
C
   TRST=1. : RESTART USING NEW TAPF
                                                                           00013740
   TERM=0. : DO NOT TERMENATE OLD TAPE IF TRST=1.
                                                                           00013250
      READ (INU. 80) TAULO, TAULH, TRST. TERM
                                                                           00013260
      IF (TRST.NE.O.O) KTP=10
                                                                           00013270
      TAU1=TAUID+24.+TAUIH
                                                                           00013780
C (3)
                                                                           00013290
      READ (INU.BO) TAUD. TAUD. TAUH. TAUF. TAUC
                                                                           00013300
                                                                           00013310
      TAUE=24.0+TAUE
C (4)
                                                                           00013320
       READ (INU.82) OTM. NCYCLE. NC3
                                                                           00013330
C (5)
                                                                           00013340
                                                                          00013350
      READ (INU.10) JM. IM. OLAT
C (6)
                                                                          00013360
       READ (INU. 80) AX
                                                                          00013370
C (7)
                                                                          00013380
                                                                          00013390
       READ (INU. BO) FMX. ED. TCNV
                                                                          00013400
```

```
C (8)
                                                                            00013410
      READ (INU, 80) RAO, GRAV, DAY
                                                                            00013420
                                                                            00013430
C (9)
      READ (INU. BO) RGAS. KAPA
                                                                            00013440
C (10)
                                                                           00013450
       READ (INU, 80) PSL, PTROP
                                                                            00013460
                                                                           00013470
C (11)
       READ (INU, 80) PSF
                                                                           00013480
C (12)
        FOR POLAR MAPS. LATITUDE OF INSCRIBED CIRCLE
                                                                           00013490
      READ (INU, BO) DLIC
                                                                            00013500
                                                                           00013510
C (13)
      READ (INU.85) KSET
                                                                            00013520
      DO 40 J=1,32
                                                                           00013530
      KEYS(J)=KSET(J).NE.BLAMK
 40
                                                                            20013540
                                                                           00013550
      01-01M-60.0
                                                                           00013560
      A=AX+1.0E5
                                                                           00013570
      FIMEIM
                                                                           00013580
      DLAT=DLAT+P1/180.0
                                                                           00013590
      DLON=2.0+PI/FIM
                                                                           00013600
                                                                           60013610
       FM=FMX+9.00001
                                                                           00013620
C
                                                                           00013630
      R 10=RAD=1000.0
                                                                           00013640
      94Y=04Y+3600.0
                                                                           00013650
C
                                                                           00013660
      CALL MAGFAC
                                                                           00013670
      READ (INU.1199) MARK
                                                                           00013680
 123
      TREADY . TRUE .
                                                                           00013690
 125
      READ (KTP) TAUX, CL
                                                                           00013700
      IF (TAUX .LT. 0.0) 60 TO 135
                                                                           00013710
      TAU-TAUX
                                                                           00013720
      TAUID=IFIX(TAUX/24.)
                                                                           00013730
      TAUIH-TAUX-24. +TAUID
                                                                           00013740
C
      IF (KEY(9)) WRITE (MTP.9120) TAUIN. TAUIH
                                                                           00013750
      C(22) - C1(22)
                                                                           00013760
      SOEDY - 101(29)
                                                                           00013770
      SDEYR . 1C1(30)
                                                                           00013780
      CALL OUTAPE(KTF.1)
                                                                           00013790
      IF (TAUX-TAUI) 125, 190, 190
                                                                           00013800
  135 BACKSPACE KTP
                                                                           00013810
  190 CONTINUE
                                                                           00013820
      IF ((TRST.EO.1.).AND.(TERM.EO.O.)) GO TO 195
                                                                           00013830
      TAUX=-ABS(TAUX)
                                                                           00013840
      WRITE (KTP) TAUX, CL
                                                                           00013850
      BACKSPACE KTP
                                                                           00013860
  195 CONTINUE
                                                                           00013870
      1F (TRST.EQ.O.O) GO TO 202
                                                                           00013880
      REWIND KTP
                                                                           00013890
      KTP=11
                                                                           00013900
      WRITE (KTP) TAU+C
                                                                           00013910
      CALL OUTAPE (KTP.2)
                                                                           00013920
202 JUMP - FALSE.
                                                                           00013930
```

```
C
                                                                              00013940
  205 CALL INITZIMARK)
                                                                              00013950
   206 CALL INSDET
                                                                              00013960
       IF (JUMP) GO TO 300
                                                                              00013970
 250
       CONTINUE
                                                                              00013980
                                                                              00013990
       1F (KEY(-201) TAU=24.
                                                                              00014000
       TAUL = TAIL
                                                                              00014010
       WRITE (MTP.1200) ID. XLABL
                                                                              00014020
       WRITE (MTP. 1201) TAULO, TAULH, TRST, TAUL
                                                                              00014030
       WRITE (MTP.1201) TAUD. TAUD. TAUH. TAUE. TAUC
                                                                              00014040
       WRITE (MTP,1201) DTM,DLAT,AX,FMX,FD,TCNV
                                                                              00014050
       WRITE (MTP.1201) RAD.GRAV.DAY.RGAS.KAPA.PSL.PTROP.PSF.DLIC
                                                                              00014060
       WRITE INTP. 12027 JM. 1M. NCYCLE. NC3
                                                                             00014070
       WRITE (MTP.1197) AX
                                                                             00014080
      WRITE (MTP.1195) ED. TCNV
                                                                             00014090
      WRITE (MTP.1196) FMX
                                                                             00014100
C
                                                                             00014110
 300
      TOFDAY=AMODITAU,ROTPER)
                                                                             00014120
      WRITE (2) GW. GT. TS. SN
Č
                                                                             00014130
      REWIND 2
                                                                             00014140
      RETURN
                                                                             00014150
C
                                                                             00014160
C
                                                                             00014:70
 10
      FORMAT (215.F10.0)
                                                                             00014180
      FORMAT (1044)
 50
                                                                             00014190
      FORMAT (12,841,2F10.0,844)
 57
                                                                             00014200
 82
     FORMAT (F10.0.215)
                                                                             00014210
      FORMAT (5F10.0)
 80
                                                                             00014220
 85
      FORMAT (32A1)
     FORMAT (6HO FD=.F5.2./7HO TCNV=.F5.0)
FORMAT (6HO FM=.F4.2.8H+0.00001)
                                                                             00014230
1195
                                                                             00014240
1196
                                                                             00014250
1197 FORMATIONO
                    A*+F4.2.9H+100000.01
                                                                             00014760
1199 FORMAT (213)
                                                                             00014270
9120 FORMAT (1x.2F10.2)
                                                                             00014280
9731 FORMAT ( 1TAPE . 14. ODES NOT CONTAIN THE STARTING TIME !)
9781 FORMAT L'OSWITCHING FROM TAPE "-12." TO TAPE "-121
                                                                             00014290
                                                                             00014300
1200 FORMAT (1H1.A4.2X.9A4)
1201 FORMAT (9(1X.E12.5))
                                                                             00014310
                                                                             00014320
1202 FORMAT (10(1X.15))
                                                                            00014330
      FNU
                                                                            00014340
```

```
C
                                                                            00014350
               UBROUTINE
                                                                            00014360
         MAGFAC
                                                                            00014370
                                                                            00014380
   DO OISPONLO, OSNOMESTET . ABN. COMMON
11
                                                                            00014390
11
                                                                            00014400
C
                                                                            00014410
CC
      EQUAL LATITUDE DISTANCE PROJECTION
                                                                            00014420
                                                                            00014430
      JMMI =JM-1
                                                                            00014440
      FJM-JM
                                                                            00014450
      FJE=FJM/2.0+0.5
                                                                            00014460
      00 410 J=2,JMM1
                                                                            00014470
      FJ=J
                                                                            00014480
      LATIJ) -DLAT-(FJ-FJE)
                                                                            00014490
      LAT(1)=-P1/2.0
                                                                            00014500
      LATIJM)=P1/2.0
                                                                           00014510
C
                                                                           00014520
      00 415 J=2.JM
                                                                           00014530
  415 DYU(J)=RAO+(LAT(J)-LAT(J-1))
                                                                           00014540
      040111-040151
                                                                           00014550
      00 420 J=1.JM
                                                                           00014560
  420 DXP(J) -RAO+COS(LAT(J))+DLON
                                                                           00014570
                                                                           00014580
      DO 430 J-2.JM
                                                                           00014590
  430 OXU(J)=0.50(DXP(J)+OXP(J-1))
                                                                           20014600
      0xu(1)=0xu(2)
                                                                           00014610
      DO 440 J=2.JMM1
                                                                           00014620
 440 0YP(J)=0.5+(DYU(J+1)+0YU(J))
                                                                           00014630
      DYP(1)=DYU(2)
                                                                           00014640
     (ML)UYO- (ML)9YO
                                                                           00014650
      00 445 J=2,JMM1
                                                                           00014660
 445 DXYP(J)=0.5+(OXU(J)+OXU(J+1))+OYP(J)
                                                                           00014670
      0XYP(1)-DXU(2)+DYP(1)+0.25
                                                                           00014680
     0x4P(JM)=0XU(JM)+04P(JM)+0.25
                                                                           00014690
     DO 450 J-2, JMM1
                                                                           00014700
 450 F(J)=2.00P1/DAY0(RAO/OXYP(J))+((COS(LAT(J-1))+COS(LAT(J)))+OXU(J) 00014710
     -- (COS(LAT(J))+COS(LAT(J+1))1+0xU(J+1)1/2.0
                                                                           00014720
     F(JM)=2.0=P1/OAY=(RAO/DXYP(JM))=(COS(LAT(JM-1))+COS(LAT(JM)))
                                                                           00014730
     0.5/(ML)UX0**
                                                                           00014740
     F(1)=-F(JM)
                                                                           00014750
                                                                           00014760
    USED IN COMP4 ONLY
                                                                           00014770
     EXP1-4.0/3.0
                                                                           00014780
     00 42 J=1,JH
                                                                           00014790
     AXU(J)=A+(0XU(J)/3.065)++EXP1
                                                                           00014800
     AXV(J) = A = (0XP(J)/3.0E5) = EXP1
                                                                           00014810
     AYU(J) = A = (0 YU(J) / 3. 0 = 5) = 0 EXP1
                                                                           00014820
     AYV(J) -A+(DYP(J)/3.0E5)++EXP1
42
                                                                           00014830
     RETURN
                                                                           00014840
     ENO
                                                                           00014850
```

C		00014840
	SUBROUTINE	00014860
	* INSOET	00014870
/*		00014889
// 0	D DISP=OLD.DSN=MES727.ARN.COMMON	00014890
11	00 •	00014900
	LOGICAL DCLK	00014910
C		00014920
	00 411 Jel.JM	00014930
	SINL(J)-SIN(LAT(J))	0001494()
411	COSL(J)=COS(LAT(J))	00014950
C		00014960
CCC	1F (KEY(11).OR.KEY(12)) GO TO 15	00014970
C		00014980
	1 NU = 5	00014990
	READ (INU.7) CLKSH. RSETSH. LDAY. LYR	00015000
31	IF INSETSH .NE. RESET) GO TO 14	00015010
	SDEDY-LDAY	00015020
	SDEWR = LYR	000 \$5030
14	DCLKFALSE.	00015040
	CALL SOFT	00015050
	IF ICLKSW .NE. OFF) DCLK# .TRUE.	00015060
	RETURN	00015070
C		00015080
15	OCLK FALSE .	00015090
	CALL SOFT	00015100
	RETURN	00015110
C		00015120
7	FORMAT (A4.6X.A4.6X.13.7X.14)	00015130
C		00015140
	DATA RESET/4HRESE/. OFF/4HOFF /	00015250
C		00015160
	END	00015170
		00015180

```
C
                                                                             00015190
                          OUT
                                                                             00015200
          SDET
                                                                             00015210
 1.
                                                                             00015220
 // DID DISP=OLD.DSN=MES727.ARN.COMMON
                                                                             00015230
 //
      00
                                                                             00015240
                                                                             00015250
       DIMENSION ZMONTH(3,12), MONTH(12)
                                                                             00015260
       LOGICAL
                DCLK
                                                                             00015270
       MAXDAY=DAYPYR + 1.0E-2
       IF (DCLK) SDEDY=SDEDY+1
IF (SDEDY .LE. MAXDAY) GO TO 211
                                                                             00015280
                                                                             00015290
                                                                             00015300
       SDEDY=SDEDY-MAXDAY
                                                                             00015310
       SDEYR=SDEYR+1
                                                                             00015320
211
       JDYACC=0
                                                                             00015330
       DO 251 L=1.12
                                                                             00015340
       JDYACC=JDYACC+MONTH(L)
                                                                             00015350
       IF ISDEDY .LE. JOYACCI GO TO 241
                                                                             00015360
251
      CONTINUE
                                                                             00015370
       L=12
                                                                             00015380
241
      MNTHDY=MONTH(L)-JDYACC+SDEDY
                                                                             00015390
      AMONTH(1)=ZMONTH(1+L)
                                                                             00015+00
      AMONTH(2)=ZMONTH(2.L)
                                                                             00015410
      AMONTH(3)=ZMONTH(3.L)
                                                                             00015420
      DY=SDEDY
                                                                             00015430
      SEASON=(DY-EONX)/DAYPYR
                                                                             00015440
      DIST={DY-APHFL }/DAYPYR
                                                                             00015450
C
                                                                             00015460
      EONX = JUNE 22
CCC
                                                                             00015470
      APTHELION = JULY 1
                                                                             00015480
      ECCN= ORBITAL ECCENTRICITY
                                                                             00015490
C
                                                                             00015500
      DEC +DECMAX+COS(2.0+P1+SEASON)
                                                                             00015510
      RSDIST=(1.0+ECCN+COS(2.0+PI+DIST))++2
                                                                             00015520
      SIND=SIN(DEC)
                                                                            00015530
      COSD=COSIDECT
                                                                            00015540
C.
                                                                            00015550
      DATA ZMONEH/
                          JANUARY
                                      FEBRUARY
                                                      MARCH
                                                                   APRIL
                                                                            00015560
           MAY
                       JUNE
                                    JULY
                                               AUGUST
                                                        SEPTEMBER
                                                                       OCTO800015570
     XER
            NOVEMBER
                         DECEMBER 1/
                                                                            00015580
      DATA
            MONTH/31,28,31,30,31,30,31,30,31,30,31,30,31/
                                                                            00015590
      RETURN
                                                                            00015600
      END
                                                                            00015610
```

```
C
                                                                         00015670
              UBROUTINF
                                                                         00015630
                                                                         00015640
/ .
                                                                         00015650
// DD OISPOUD. DSN=MES727 AHN. COMMON
                                                                         00015660
100000
            DD
                                                                         00015670
                                                                         00015680
                                                                         00015690
      THIS SUBROUTINE IS FOR COLD START INITIAL CONDITION.
                                                                         00015700
                                                                         00015710
C
                                                                         00015720
      RETURN
                                                                         00015730
C
                                                                         00015740
      END
                                                                         00015750
C
                                                                         00015760
              URROUTINE
                                                                        00015770
         INIT2 (MARKI)
                                                                        00015780
1.
                                                                        00015790
// DD DISP=DLD.DSN=MES727.ABN.COMMON
                                                                        00015800
           DD
                                                                        00015810
      REAL
           METER
                                                                        00015820
      OIMENSION HEIGHT (46)
                                                                        00015830
      LOGICAL FAH
                                                                        00015840
C
                                                                        00015850
      INU . 5
                                                                        00015860
      1F (MARK) .EO. 0) GO TO 71
                                                                        00015870
C
                                                                        00015880
C
   READ UNIT CARD FOR GEOGRAPHY
                                                                        00015890
C
                                                                        00015900
75
     READ (INU.110) TEMSCL
                                                                        00015910
     IF (TEMSCL .FO. FAREN) GO TO 86
                                                                        00015920
     IF ITEMSCL .FO. CENTIGI GO TO 46
                                                                        00015930
     STOP 19121
                                                                        00015940
86
     FAH= . TRUE .
                                                                        00015950
     GO TO 97
                                                                        00015960
46
     FAHR. FALSF.
                                                                        00015970
     GN TO 97
                                                                        00015980
     WRITE (6,76)
19
                                                                        00015990
     STOP
                                                                        00016000
  97 CONTINUE
```

00016010

```
00016020
C
     READ GEOGRAPHY DECK
                                                                           00016030
C
          OCEAN: SEA SURFACE TEMPERATURE
                                                                           00016040
C
         LAND: -64
                                                                           00016050
6
          SEA ICE OR LAND ICE: -96
                                                                           00016060
                                                                          00016070
       00 15 IL+1, MARK1
                                                                           00016080
      READ % INU.102) (TOPOG(J.IL).J=1.15).IL1.(TOPOG(J.IL).J=16.30).IL2 00016090
     X. (TOPOG(J. IL).J=31.46).1L3
                                                                          00016109
      IF (ILL.NE.ILZ.OR.ILZ.NE.IL3.OR.ILL.NE.IL) GO TO 19
                                                                          00016110
 15
      CONTINUE
                                                                          00016120
      DO 23 1L=1.IM
                                                                          00016130
      DO 23 JL=1.JM
                                                                          00016140
       IF (TOPOG(JL.IL) .LE. -64.0) 60 TO 23
                                                                          00016150
       IF (FAH) TOPOG(JL.1L)=(TOPOS(JL.1L)-32.0)*5./9.
                                                                          00016160
      TOPOG(JL.IL)=TOPOG(JL.IL)+273.0
                                                                          00016170
 23
      CONTINUE
                                                                          00016180
      CNST=GRAV+30.48
                                                                          00016190
      HCST=1.
                                                                          00016200
                                                                          00016210
     READ UNIT CARO FOR TOPHGRAPHY
                                                                          00016220
                                                                          00016230
      READ (INU.110) HSCL
                                                                          00016240
      IF (MSCL .NE. FEET .AND. MSCL .NE. METER) GO TO TR
                                                                          00016250
      IF (MSCL .EQ. METER) HCST=39.39/120.
                                                                          00016260
      CNST=CNST+HCST
                                                                          00016270
      DO 10 1=1. MARK1
                                                                          00016280
                                                                          00016290
    READ TOPOGRAPHY DECK
                                                                          00016300
      READ (INU.101) (HEIGHT(J).J=1.25).IL1.(HEIGHT(J).J=26.JM).IL2
                                                                          00016310
      IF (IL1 .NE. IL2 .OR. IL1 .NF. I) GO TO 19
                                                                          00016320
      DO 20 J=1.JM
                                                                          00016330
      IF (TC/0G(J.1)+64.0) 60.50.20
                                                                          00016340
 50
      TOPOG(J.I) =-HEIGHT(J) +CNST
                                                                          00016350
      GO TO 20
                                                                          00016360
 60
      TOPOG(J.1)=-(HEIGHT(J)+CNST+10.E5)
                                                                          00016370
      CONTINUE
 20
                                                                          000163R0
 10
      CONTINUE
                                                                          00016390
 71
      RETURN
                                                                          00016400
 78
      WRITE (6.112) HSCL
                                                                          00016410
      STOP 19122
                                                                          00016420
                                                                          00016430
 101 FORMAT (25F3.0.1X.14/21F3.0.13X.14)
                                                                          00016440
 102 FORMAT (15F4-1-18X-12/15F4-1-18X-12/16F4-1-14X-12)
                                                                          00016450
 110 FORMAT (A4)
                                                                          00016460
 111 FORMAT (1H1.6X.2A6.40H NOT RECOGNIZED AS TEMPERATURE CONTROL.
                                                                         100016470
 112 FORMAT (1H1.6X.2A6.36H NOT RECOGNIZED AS HEIGHT CONTROL.
                                                                          00016480
 76
      FORMATI///69H GEOGRAPHY DATA SEQUENCE ERROR. RELOAD GEOGRAPHY DECKOOO16490
     9 AND PUSH START.///)
                                                                          00016500
      OATA FAREN/AMPAHR/.CENTIG/AMCENI/.FEET/AMPEET/.METER/AMMETE/
                                                                          00016510
C
                                                                          00016520
      END
                                                                          00016530
```

R. MAP PROGRAM LISTING

To facilitate the output of the primary dependent variables and auxiliary physical quantities, a number of routines for the production of analyzed maps have been prepared. Examples of these maps have been given in Chapters III and IV. The FORTRAN listing of the complete set of map routines is given below, with the cards in the program numbered sequentially for easy reference. Each of the map subroutines automatically computes the zonal average at each grid latitude, as well as the global average. The maps 2, 3, 4, 6, 8, 17, 18, 21, 27, and 28 may be produced for an arbitrary tropospheric σ or p surface by interpolation or extrapolation of the solutions at the basic levels $\sigma = 1/4$ and $\sigma = 3/4$, while the other maps refer only to fixed levels, layers, or quantities.

It may be noted from the model description (see Chapter III) that while the primary dependent variables are computed each time step, the source or forcing terms (such as the diabatic heating) are computed every fifth time step. In order that any of the maps, whether involving a dependent variable and/or forcing term, may be prepared at any time selected for map output, portions of the subroutines OUTAPE, VPHI4, AVRX, and COMP 1 have been made part of the map program, a new subroutine MAPGEN has been written, and a substantial portion of the subroutine COMP 3 has also been incorporated. In this way those maps involving heating or precipitation, for example, are explicitly computed from the data at the time requested for map output.

The complete list of maps and the levels associated with their output (in a coordinates) is shown below; examples of those maps marked by an asterisk (*) are given in Chapter IV, with Map 5 given in Chapter III, Section F.

^{*}Map 1: Smoothed sea-level pressure ($\sigma = 1$)

^{*}Map 2: Zonal wind component $(0 \le \sigma \le 1)$

Map 3: Meridional wind component $(0 \le \sigma \le 1)$

Map 4: Temperature $(0 \le \sigma \le 1)$

```
Topography (sea-surface temperature, land elevation, ice
            distribution)
  Map 6:
           Geopotential height (0 \le \sigma \le 1)
  Map 7: Unsmoothed sea-level pressure (\sigma = 1)
  Map 8:
           Total diabatic heating (0 \le \sigma \le 1)
  Map 9:
           Large-scale precipitation rate
 Map 10:
           Sigma vertical velocity (\sigma = 1/2)
 Map 11:
           Relative humidity (\sigma = 3/4)
 Map 12:
           Precipitable water
 Map 13:
           Convective precipitation rate
 Map 14:
           Evaporation rate (\sigma = 1)
 Map 15:
           Sensible heat flux (\sigma = 1)
 Map 16: Lowest-level convection (\sigma = 1)
 Map 17: Wind direction angle (0 \le \sigma \le 1)
 Map 18: Wind direction vectors (0 \le \sigma \le 1)
Map 19: Long-wave heating in layers (\sigma = 0 to 1/2, \sigma = 1/2 to 1)
Map 20:
          Short-wave absorption (heating) in layers (\sigma = 0 to 1/2,
           \sigma = 1/2 \text{ to } 1)
Map 21: Wind magnitude (0 \le \sigma \le 1)
Map 22:
          Surface short-wave absorption (heating) (\sigma = 1)
Map 23:
          Surface air temperature (\sigma = 1)
Map 24:
          Ground temperature (\sigma - 1)
Map 25:
         Ground wetness (\sigma = 1)
Map 26:
         Cloudiness (high, middle, low)
Map 27: Pressure at sigma surfaces (0 \le \sigma \le 1)
Map 28: Total convective heating in layers (\sigma = 0 - 1/2, \sigma = 1/2 - 1)
```

*Map 29: Latent heating ($\sigma = 1/2$ to 1)

*Map 30: Surface long-wave cooling ($\sigma = 1$)

Map 31: Surface heat balance $(\sigma = 1)$

```
*00000030
C*
    MAP LIST FOR MINTZ-ARAKAWA TWO-LEVEL GENERAL CIRCULATION MODEL
                                                              *00000040
C*
C*
                                                              *00000050
C*
                                                              *00000060
00000100
// DD D1SP=OLD.DSN=MES727.ABN.COMMON
                                                              00000110
       DD *
     COMMON/COUT/ZM(46), SURF.LEV.ISL.NAME(13)
                                                              00000120
     COMMON /CDT/TAPIN
                                                              00000130
                                                              00000140
     DIMENSION MAP(99).SRF(99).SNT(99).2M2(46)
     DATA JBLK/4H
                                                              00000150
                                                              00000160
     DATA BCTP/ TAPE 1/
 100 FORMAT (5F10.0)
101 FORMAT (12,2E10.0,13A4)
                                                              00000170
                                                              00000180
 102 FORMAT (5(1X.F8.3))
                                                              00006190
 103 FORMAT (1X+12+2(1X+F8-3))
                                                              00000200
 104 FORMAT (1X,FB.2.2X,12,2X,FB.2.2X,13A4,2X,E13.5)
105 FORMAT (2E10.0,A4)
                                                              00000210
                                                              00000220
 106 FORMAT (1X,FR.3,1X,FR.3,2X,A4)
                                                              00000230
 107 FORMAT (1H1)
                                                              00000240
                                                              00000250
    READ (5,105) TO, TEND, TAPIN
    WRITE (6,106) TO, TEND, TAPIN
                                                              00000260
                                                              00000270
    TOPOG(1.1)=-1.0
                                                              00000280
    IF (TAPIN.NF. RCTP) READ (B) TOPOG
    TSA=TOPOG(1.1)
                                                              00000290
    T0=24. *T0
                                                              00000300
                                                              00000310
    TEND=24. *TEND
    DAY1=24. *3600.
                                                              00000320
    EJECT=0.0
                                                              00000330
                                                              00000340
    1=0
200 RFAD (5.101) MAPNO. SURF
                                                             00000350
    WRITE (6.103) MAPNO.SURF
                                                             00000360
                                                             00600370
    1=1+1
    MAP(I)=MAPNO
                                                             00000380
    IF (MAPNO.EQ.O) GO TO 230
                                                             00000390
    SRF(1)=SURF
                                                             00000400
    SNT(I)=SINT
                                                             00000410
    GO TO 200
                                                             00000420
230 CONTINUE
                                                             00000430
   T1=0.0
                                                             00000440
250 RFAD (8) TAU.C
                                                             00000450
   DAY=DAY1
                                                             00000460
   IF (TAU.EQ.TSA) GO TO 250
                                                             00000470
   NODUT=0
                                                             00000480
   T2= TAU/24.
                                                             00000490
   IF (EJECT.NE.O.O) EJECT=EJECT+1.0
                                                             00000500
   IF (EJECT.EQ.2.0) PRINT 107
                                                             00000510
   WRITE (6,102) TAU, T2
                                                             00000520
   IF (TAU.LT.0.0) GD TO 250
                                                             00000530
   CALL OUTAPE
                                                             00000540
   IF (TAU.LT.TO) GO TO 250
                                                             00000550
   IF (TAU.GT.TEND) CALL EXIT
                                                             00000560
                                                             00000570
```

		_
	IF (TAU.LE.T1) GO TO 250	00000580
	T1=TAU	00000590
	[= 1	00000600
	1F (EJECT.NE.O.O) GO TO 270	00000610
	CALL COMP3	00000620
	PRINT 107	00000630
	EJECT=1.0	00000640
270	MAPNO=MAP(I)	00000650
	IF (MAPNO.EQ.O) GO TO 250	00000660
	SURF=SRF(I)	00000670
	SINT=SNT(I)	00000680
	DO 275 J=1,13	00000690
275	NAME(J)=JBLK	00000330
	CALL MOPGEN (MAPNO)	00000710
	DO 290 J=1,JM	00000710
	ZM2(J)=0.0	00000720
	FCNT=0.0	00000740
	DO 280 K=1,IM	00000740
	1F (TOPOG(J.K).LT.1.0) GO TO 280	
	ZM2(J)=ZM2\J)+WORK2(J,K)	00000760
	FCNT=FCNT+3.0	00000770
280	CONTINUE	00000780
	IF (FCNT.NE.O.O) ZM2(J)=ZM2(J)/FCNT	00000790
290	CONTINUE	0080000
	WRITE(9)TAU. 1D. MAPNO, NAME, SURF, STAGI, STAGJ, SINT, WORK2, ZM. ZMZ, ZMM	00000810
	PRINT 104, T2, MAPNO, SURF, NAME	00000820
	[=]+]	00000830
	GO TO 270	00000840
	END	00000850
		00000860

00000870
00000880
00000890
00000900
00000910
00000920
00000930
00000940
00000940
00000960
00000970
00000980
00000990
00001000
00001010
00001020
00001030
00001040
00001050
00001060
00001070
00001080
00001090
00001100
00001110

```
SUBROUTINE MOPGEN (MAPNO)
                                                                           00001120
                                                                           00001130
// OD DISP=OLO.DSN=MES727.ABN.COMMON
                                                                           00001140
         DD
                                                                           00001150
      COMMON
              /SCTL/ RCTL(2), ICTL(10)
                                                                           00001160
      COMMON /COUT/ ZM(46),SURF,LEV.1SL.NAME(13)
                                                                           00001170
      EQUIVALENCE (LEVEL.SURF)
                                                                           00001180
      LOGICAL LEV
                                                                           00001190
      MAPGEN= . TRUE .
                                                                           00001200
      LEV=.FALSE.
                                                                           00001210
      1F (SURF.LT.2.0) LEV=.TRUE.
                                                                           00001220
C
                                                                           00001230
      GO TO (301,302,303,304,305,306,307,308,309,310
                                                                           00001240
             ,311,312,313,314,315,316,347,318,319,320
                                                                           00001250
             .321.322.323.324.325.326.327.328.329.330.331).MAPNO
                                                                           00001260
C
                                                                           00001270
 301
      CALL MAPI
                                                                           00001280
      GO TO 410
                                                                           00001290
 302
      CALL MAP2
                                                                           00001300
      GO TO 410
                                                                           00001310
 303
      CALL MAPS
                                                                           00001320
      GO TO 410
                                                                           00001330
 3()4
      CALL MAP4
                                                                          00001340
      GO TO 410
                                                                           00001350
305
     IF (KEY(18)) MAPGEN=.FALSE.
                                                                          00001360
      CALL MAP 5
                                                                          00001370
      GO TO 410
                                                                          00001380
306
     CALL MAPS
                                                                          00001390
      GO TO 410
                                                                          00001400
307
     CALL MAP7
                                                                          00001410
     GO TO 410
                                                                          00001420
 308 IF (NODUT. FO.O) CALL COMP3
                                                                          00001430
     NODUT=1
                                                                          00001440
     CALL MAPS
                                                                          00001450
     GO TO 410
                                                                          00001460
 309 IF (NOOUT.FO.O) CALL COMP3
                                                                          00001470
     NOOUT=1
                                                                          00001480
     CALL MAPS
                                                                          00001490
     GO TO 410
                                                                          00001500
310
     CALL MAP10
                                                                          00001510
     GO TO 410
                                                                          00001520
311
     CALL MAP 11
                                                                          00001530
     GO TO 410
                                                                          00001540
312
     CALL MAP12
                                                                          00001550
     GO TO 410
                                                                          00001560
```

313 IF (NODUT. EO.O) CALL COMP3	*******
NOOUT=1	00001570
CALL MAP13	00001580
GO TO 410	00001590
314 IF (NOUUT.EO.O) CALL CUMP3	00001600
NOO147 1	00001610
CALL MAP14	00001620
60 10 410	00001630
315 IF (NOOUT. EO.O) CALL COMP3	00001640
40001.	00001650
CALL MAP15	00001660
60 70 410	00001670
316 IF (NOOUT.EQ.O) CALL COMP3	00001680
NOOUT+1	00001690
CALL MAP16	00001700
GO TO 410	00001710
317 CALL MAP 2	00001720
00 3175 f=1.IM	00001730
00 3175 J=1,JM	00001740
3175 WORK1(J. 1) = WORK2(J. 1)	00001750
CALL MAP 3	00001760
CALL MAP 17	00001770
GO TO 410 318 CALL MAP 2	00001700
	00001790
00 3185 I=1.IM	00001#00
00 3185 J=1.JM	00001810
3185 WORK1(J.I)=WORK2(J.I) CALL MAP 3	00001820
CALL MAP IN	00001#30
GO TO 410	00001840
319 15 (MOOUS CO A) CO	00001650
319 IF (NODUT.EO.O) CALL COMP3	00001860
CALL MAPIS	00001470
60 10 410	00001600
320 15 (NOOUS 50 0) 000	00001890
320 IF (NOOUT.ED.O) CALL COMP3 NOOUT=1	00001900
CALL MAPZO	00001910
GO TO 410	00001920
321 CALL MAP 2	00001930 00001940
00 3215 I=1.IM	00001950
DO 3215 J=1,JM	00001960
3215 WORK1(J.1)=WORK2(J.1)	00001970
CALL MAP 3	
CALL MAP 21	000019#0 00001990
GO TO 410	00002000
322 IF (NOOUT.EO.O) CALL COMP3	00002010
NOOUT=1	00002020
CALL MAPZZ	00002020
60 TO 410	00002030
	00002050
	00002030

323 IF (NORUT.EQ.O) CALL COMP3	
NOOUT=1	00002060
CALL MAP23	00002070
GO TO 410	00002080
324 CALL MAP24	00002040
GN TN 410	00002100
325 CALL MAP 25	00002110
GO TO 410	00002120
326 IF (MODUT.EO.O) CALL COMP3	00002130
MOUT=1	00002140
CALL MAP26	00002150
60 10 410	00002160
327 CALL MAP27	00002170
GO TO 410	00002180
328 IF (NOOUT.EO.O) CALL COMP3	00002190
MOOUT = 1	00002200
CALL MAPZA	00002210
GO TO 410	00002220
329 IF (NOOUT.EO.O) CALL COMP3	00002230
MOOUT=1	00002240
CALL MAP29	00002250
60 10 410	00002260
330 IF (NODUT.EO.O) CALL COMP3	00002270
NOOUT = 1	00002280
CALL MAP30	00002290
GO TO 410	00002300
331 IF (NODUT.EO.O) CALL COMP3	00002310
70007 = 1	00002320
GALL MAP 31	00002330
GO TO 410	00002340
410 RETURN	00002350
	00002360
END	00002370
	00002380

FUNCTION IPK(IL.IR)	
INTEGER IHALF+2(2)	00002390
EQUIVALENCE (IMALE(1).IMC)	00002400
IHALF(1)=IL	00002410
IMALF(2)=IR	00002420
1PK=1WD	00002430
	00002440
RETURN	00002450
ENTRY [RH([PKWD)	00002460
IND=IPKND	00002470
IRH=IHALF(2)	00002480
RETURN	00002440
ENTRY ILH(IPKWO)	00002500
IND=IPKND	00002510
ILH=IHALF(1)	00002520
RETURN	00002530
END	00002540
FUNCTION VPH14 (J.1)	00002550 00002560
	00002570
DD DISP#OLD.DSN=MES727.ABN.COMMON	00002580
0D •	00002590
VPH14=0.	00002600
IF (TOPOG(J.1).LT. 1.0) VPH14*AMOD(-TOPOG(J.1).10.E5)	00002610
	00002620
RETURN	00002630
END	00002640
LOGICAL FUNCTION KEY(N)	00002650
LOGICAL KEYS+1(32)	00002660
COMMON /VKEYV/ KEYS	00002670
N=TABS(M)	00002680
KFY=KEYSIN)	00002690
KFY=KEYS(N) IF (M .LT. O) KEYS(N)=.FALSE.	00002690
KFY=KEYSIN)	00002690

C

```
SUBROUTIN
                                                                             00002730
                     MAPI
                                                                             60002740
 // DD DISP=OLD.DSN=MES727.AHN.CHMMON
                                                                             00002750
          DO
                                                                            00002760
       COMMON /COUT/ ZM(46).SURF.LEV.1SL.NAME(13)
                                                                            00002770
       LOGICAL LEV. STAGJ. STAGI. ISL
                                                                            00002780
       DIMENSION NAMEL (13)
                                                                            00002790
                                                                            00002800
 C
       SEA LEVEL PRESSURE. MAP TYPE 1
                                                                            00002810
       L1=1
                                                                            00002820
       L2=2
                                                                            00002830
 C
                                                                            00002840
       FIM=IM
                                                                            00002850
       1MM2=1M-2
                                                                            00002860
       I-ML=IMML
                                                                            00002870
       STAGJ=. FALSE.
                                                                            00002880
       STAGI .. FALSE.
                                                                            00002890
       $161=$16(1)
                                                                            00002900
       $163*$16121
                                                                            00007910
       FLR = . 5 + . 1 828 / ( 30 . 48 + GRAV)
                                                                            00002920
C
                                                                            00002930
       00 110 1=1.NL
                                                                           00002940
 110
      NAME(1)=NAMFL(1)
                                                                            00002950
                                                                           00002960
c 118
       DO 118 J=1.JM
                                                                           00002970
      ZM(J)=0.0
                                                                           00002980
                                                                           00002490
      DO 128 1=1.1M
                                                                           00003000
      00 128 J=1.JM
                                                                           00003010
      PH[4=VPH[4[J+]]
                                                                           00003020
      PJ1=P(J-1)
                                                                           00003030
000
      T14=[LH(03T(J+1))
                                                                           00003040
      T4=TT4/10.
                                                                           00003050
      EXTRAPOLATED SURFACE AIR TEMPERATURE
                                                                           00003060
      11=11J.1-L11
                                                                           00003070
      13=1(J.1.L2)
                                                                           00003080
      1441.5+13-0.5+11
                                                                           00003090
      RTM=RGAS+(T4+FLR+PH[4]
                                                                           00003100
      ACL=(PJI+PTRIIP) =EXP(PHI4/RTM)-PSL
                                                                           00003110
      JALLIMZ=(LIMT
                                                                           00003120
128
     WORKIIJ.II=ACC
                                                                          00003130
                                                                          00003140
```

```
C
                                                                          00003150
      DO 148 1=1.IM
                                                                          00003160
      IP1=MOD(1.IM)+1
                                                                          00003170
      IM1=MOD(I+IMM2+IM)+1
                                                                          00003180
      WORK2(JM,I)=WORK1(JM,I)
                                                                          00003190
      WORK2(1,1)=WORK1(1,1)
                                                                          00003200
                                                                          00003210
      00 148 J=2,JMM1
      WORK2(J+I)=( WORK1(J+1,IM1)+2,*WORK1(J+1,I) + WORK1(J+1,IP1)
 148
                                                                          00003220
               +2.*WORK1(J.1M1) +4.*WORK1(J.1) +2.*WORK1(J.1P1)
                                                                          00003230
                 + WORK1(J-1,1M1)+2.*WORK1(J-1,1) + WORK1(J-1,1P1))/16.00003240
C
                                                                          00003250
      ZMM=0.0
                                                                          00003260
                                                                          00003270
      WTM=0.0
      DO 158 J=1.JM
                                                                          00003280
      WTM-WTM + ABS(DXYP(J))
                                                                          00003290
      ZM(J)=ZM(J)/FIM
                                                                          00003300
                                                                          00003310
     ZMM=ZMM+ZM(J)+ABS(DXYP(J))
      Z MM=Z MM/WTM
                                                                          00003320
                                                                          00003330
      SPOL=ZM(1)
      NPOL=ZM(JM)
                                                                          00003340
C
                                                                          00003350
      DATA NAMEL/'SEA LEVEL PRESSURE SMOOTHED (MB-1000.)
                                                                       1/ 00003360
      DATA NL/13/
                                                                          00003370
      RETURN
                                                                          00003380
C
                                                                          00003390
      ENO
                                                                          00003400
```

```
SUBROUT
                                                                            00003410
                    MAP2
                                                                            00003420
// DO OISP=DLO.OSN=MES727.ABN.COMMON
                                                                            00003430
11
      00 .
      LOGICAL LEV. STAGJ. STAGI. 15L
COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAMF(13)
                                                                            00003440
                                                                            00003450
                                                                            00003460
      EQUIVALENCE (SURF. SIGL)
                                                                            00003470
      OIMENSION NAMEL(13)
                                                                            00003480
C
                                                                            00003490
      EAST-WEST (II) WINO COMPONENT, MAP TYPE 2
                                                                            00003500
C
                                                                            00003510
      FIM=1M
                                                                            00003520
      STAGJ=. TRUE.
                                                                            00003530
      STAG1=. TRUE.
                                                                            00003540
C
                                                                            00003550
      00 110 1=1.NL
                                                                            00003560
 110 NAME(1)=NAMEL(1)
                                                                            00003570
C
                                                                           00003580
 210
      L1=1
                                                                            00003590
      L2=2
                                                                           00003600
      SIGL1=SIG(L1)
                                                                           00003610
      SIGL 2=SIG(L2)
                                                                           00003620
      OS1G=1./(S1GL2-S1GL1)
                                                                           00003630
C
                                                                           00003640
      1F (LEV) GO TO 310
                                                                           00003650
C
                                                                           00003660
      PS=4. +(SURF-PTR()P)
                                                                           00003670
C
                                                                           00003680
      On 220 1=1.1M
                                                                           00003690
      WORK2(1,1)=0.0
                                                                           00003700
      1P1=M00(1,1M) + 1
                                                                           00003710
     ON 220 J=2.JM
                                                                           00003720
     S1GPS=PS/(P(J-1) + P(J-1) + P(J-1-1) + P(J-1-1P!)
     WORK2(J.1)=DS1G+((SIGPS-SIGL1)+U(J.1.L2)+(SIGL2-SIGPS)+U(J.1.L1)) 00003740
                                                                           00003730
     GO TO 410
                                                                           00003750
                                                                           00003760
310 OS1G1=(S1GL-S1GL1)+DS1G
                                                                           00003770
     DS162=151GL2-S1GL1+DS1G
                                                                           00003780
     DO 320 1=1.1M
                                                                           00003790
     WORK 2(1,1)=0.0
                                                                           00003800
     DO 320 J=2,JM
                                                                           00003810
320 WORK2(J,1)=DSIG1+U(J,1,L2)+U(J,1,L1)+DSIG2
                                                                          00003820
```

C		00003830
410	ZMM=0.0	00003840
	WTM=0.0	00003850
	ZM(1)=0.0	00003860
	DO 430 J=2+JM	00003870
	SUM=0.0	00003880
	DO 420 1=1,1M	00003890
420	SUM#SUM+WORK2(J+1)	00003900
	CLAT=ABS(COS(.5+(LAT(J-1)+LAT(J))))	00003910
	ZM(J)=SUM/FIM	00003920
	WTM=WTM+CLAT	00003930
430	ZMM=ZMM+ZM(J)+CLAT	00003940
	ZMM=ZMM/WTM	00003950
	SPOL=ZM(2)	00003960
	NPOL=ZM(JM)	00003970
C		00003980
	DATA NAMEL/ EAST-WEST (U) WIND COMPONENT (M/SEC)	1/ 00003990
	DATA NL/13/	00004000
	RETURN	00004010
C		00004020
C		00004030
	END	00004040

```
SUBROUTI
                                                                              00004050
                    MAP3
                                                                             00004060
// DO DISP=ULD. DSN=MES727. ABN. CCIMMON
                                                                             00004070
11
      00 *
                                                                             000040A0
       LOGICAL LEV. STAGJ. STAGI. 1SL
COMMON /COUT/ ZM(46).SURF.LEV.1SL.NAME(13)
                                                                             00004090
       EQUIVALENCE (SURF.SIGL)
                                                                             00004100
                                                                             00004110
       DIMENSION NAMEL(13)
C
                                                                             00004120
                                                                             00004130
Ċ
       NORTH-SOUTH (V) WIND COMPONENT. MAP TYPE 3
                                                                             00004140
                                                                             00004150
                                                                             00004160
       STAGJ=. TRUE.
                                                                             00004170
       STAGI=. TRUE.
                                                                             00004180
C
                                                                             00004190
      DO 110 1=1.NL
                                                                             00004200
      NAME(1)=NAMEL(1)
 110
                                                                             00004210
C
                                                                             00004220
 210
      L1=1
                                                                             00004230
      L2=2
                                                                             00004240
      SIGL1=SIG(L1)
                                                                             00004250
      SIGL2=SIG(L2)
                                                                             00004260
      USIG=1./(SIGL2-SIGL1)
                                                                             00004270
C
                                                                             00004280
      IF (LEV) GO TO 310
                                                                             00004290
C
                                                                             00004300
      PS=4. # (SURF-PTRIP)
                                                                             00004310
      DO 220 1=1.1M
                                                                            00004320
      1P1=MOD([,[M)+]
                                                                            00004330
      DO 220 J=1.JM
      SIGPS=PS/(P(J+1) + P(J+1P1) + P(J-1+1) + P(J-1+1P1))
                                                                            00004340
 270 WORK2(J.1) =DSIG+((SIGPS-SIGL1)+V(J.1.L2)+(SIGL2-SIGPS)+V(J.1.L1)) 00004360
                                                                            00004350
      UN 10 410
                                                                            00004370
```

```
C
 310
       OSIG1=(SIGL-SIGL1)+OSIG
                                                                            00004380
                                                                            00004390
       OS1G2=(S1GL2-S1GL)+0S1G
       00 320 I=1.IM
                                                                            00004400
                                                                            00004410
       DO 320 J=1.JM
       WORK2(J.1)=DSIG1+V(J.1.L2) + V(J.1.L1)+DSIG2
 320
                                                                            00004420
C
                                                                            00004430
 410
      ZMM=0.0
                                                                            00004440
                                                                            00004450
       WTM=0.0
       00 430 J=1.JM
                                                                            00004460
                                                                            00004470
       SUM=0.0
      DO 420 I=1.IM
                                                                            00004480
                                                                           00004490
 420
      SUM=SUM+WORK21J.11
      CLAT=ABSICOS(LAT(J)))
                                                                           00004500
                                                                           00004510
      ZM(J)=SUM/FIM
                                                                           00004520
      WTM=WTM+CLAT
      ZMM=ZMM+ZMIJJ+CLAT
 430
                                                                           00004530
                                                                           00004540
      MTW/MMS=MMS
      SPOL=ZM(1)
                                                                           00004550
                                                                           00004560
      NPOL=ZM(JM)
C
                                                                           00004570
C
                                                                           00004580
      DATA NAMEL/ NORTH-SOUTH (V) WIND COMPONENT (M/SEC)
                                                                           00004590
                                                                        1/ 00004600
      DATA NL/13/
C
                                                                           00004610
      RETURN
                                                                           00004620
      END
                                                                           00004630
                                                                           00004640
```

```
SUAR
                           0 11 11 0
                                                                                 00004650
                     MAP4
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                                 00004660
                                                                                 00004670
 11
      DD +
       LOGICAL LEV, STAGJ, STAGI, ISL
COMMON /COUT/ ZM(46), SURF, LEV, ISL, NAME(13)
EQUIVALENCE (SURF, SIGL)
                                                                                00004680
                                                                                00004690
                                                                                00004700
                                                                                00004710
       DIMENSION NAMEL (13)
C
                                                                                00004720
C
                                                                                00004730
       TEMPERATURE, MAP TYPE 4
       VERTICAL INTERPOLATION IS WITH POTENTIAL TEMPERATURE
                                                                                00004740
C
                                                                                00004750
              IN P**KAPPA SPACE.
                                                                                00004760
C
                                                                                00004770
       FIM=IM
       STAGJ=.FALSE.
                                                                                00004780
                                                                                00004790
       STAGI . FALSE.
                                                                                00004800
C
                                                                                00004810
       CO 110 1=1,NL
                                                                                00004820
       NAME(1)=NAMEL(1)
 110
C
                                                                                00004830
 210
                                                                                00004840
      L1=1
      L2=2
                                                                                00004850
                                                                                00004860
       SIGL1=SIG(L1)
      SIGL 2=SIG(L2)
                                                                                00004870
      PSK=SURF++KAPA
                                                                               00004880
C
                                                                               00004890
                                                                               00004900
      DO 220 1=1.1M
                                                                               00004910
      DO 220 J=1,JM
      SP=P(J,1)
                                                                               00004920
      IF (LEV) PSK=(SIGL+SP+PTR()P)++KAPA
                                                                               00004930
      PLIK=(SIGL1+SP+PTRUP)++KAPA
                                                                               00004940
      PL2K=(SIGL2+SP+PTROP)++KAPA
                                                                               00004950
      TPOTLI=T(J,I,L1)/PLIK
                                                                               0( )04960
                                                                               0 004970
      TPUTL2=T(J,1,L2)/PL2K
220 WORK2(J+1)=PSK/(PL2K-PL1K)+(TPOTL1+(PL2K-PSK) + (PSK-PL1K)+TPOTL2)0204990
     . + TKEL
```

C		
C		00005010
410		00005020
	HTM=0.0	00005030
	DO 430 J=1,JM	00005040
	SUM=0.0	00005050
	DO 420 1=1, IM	00005060
420	SOUL SOUTHORKS [10]	00005070
	CLAT=ABS(DXYP(J))	00005080
	ZM(J)=SUM/FIM	00005090
420	WTM=WTM+CLAT	00005100
430	ZMM=ZMM+ZM(J)+CLAT	00005110
	Z MM= Z MM/WT M	00005120
	NPOL=ZM(JM)	00005130
C	SPOL=ZM(1)	00005140
Č		00005150
C	DATA NAME	00005160
	DATA NAMEL/*TEMPERATURE (DEGREES CENTIGRADE)	00005170
		1/ 00005180
С	DATA TKEL/-273.1/	00005190
•	RETURN	00005200
	END	00005210
	CAD	00005220
		00005230

```
UBROUTINE
                                                                            00005240
                 MAP5
                                                                            00005250
 // OD DISP=OLO.OSN=MES727.ABN.COMMUN
                                                                            00005260
 11
      00 *
                                                                            00005270
 С
       LOGICAL LEV. STAGI.STAGJ. ISL
                                                                            00005280
       COMMON /COUT/ ZM(46) +SURF +LEV+ISL +NAME(13)
                                                                            00005290
                                                                            00005300
       EQUIVALENCE (SURF.SIGL)
                                                                            00005310
       OIMENSION NAME1(13), NAME2(13)
                                                                            00005320
 C
 С
                                                                            00005330
      GEOGRAPHY. MAP TYPE 5
                                                                            00005340
                                                                            00005350
       FIM = IM
                                                                            00005360
       FJM = JM
                                                                           00005370
       STAGI . FALSE.
                                                                           00005380
       STAGJ= . FALSE .
                                                                           00005390
       CNST=30.48#GKAV
                                                                           00005400
C
                                                                           00005410
       00 110 I=1.NL
                                                                           00005420
       NAME(I)=NAME1(I)
                                                                           00005430
  110 IF (.NOT.LEV) NAME(I)=NAME2(I)
                                                                           00005440
                                                                           00005450
       00 220 I=1.IM
                                                                           00005460
       Df) 220 J=1.JM
                                                                           00005470
       TG=TOPOG(J.I)
       IF (.NOT.LEV) GO TO 215
                                                                           00005480
       IF (TG.LT.1.0) GO TU 205
                                                                           00005490
                                                                           00005500
       TG=TG-273.
                                                                           00005510
      GO TO 220
                                                                           00005520
  205 IF (TG+10.E5.EQ.0.0) GO TO 220
  210 TG=10.E5
                                                                           00005530
                                                                           00005540
      GO TO 220
  215 IF (TG.GT.1.0) GO TO 210
                                                                           00005550
                                                                           00005560
      TG=-TG
      IF (TG.GT.9.E5) GO TO 218
                                                                          00005570
                                                                          00005580
      TG=TG/CNST
      GN TN 220
                                                                          00005590
                                                                          00005600
  218 IF (TG.EQ.10.E5) GO TO 220
                                                                          00005610
      TG=-(10.E5+(TG-10.E5)/CNST)
      GO TO 220
                                                                          00005620
                                                                          00005630
     -WORK2(J.I)=TG
 220
C
                                                                          00005640
                                                                          00005650
410
      WS=0.0
      WN=0.0
                                                                          00005660
                                                                          00005670
      DO 415 I=1.IM
      WS=WS+WORK2(1.1)
                                                                          00005680
                                                                          00005690
     WN=WN+WORK2(JM.I)
415
                                                                          00005700
      WS=WS/FIM
                                                                          00005710
     WN=WN/FIM
     DO 420 I=1.IM
                                                                          00005720
                                                                          00005730
     WORK2(1.1)=WS
                                                                          00005740
420
     WORK2(JM, I)=WN
                                                                          00005750
```

C		
	2MM=0.0	00005760
	WTM=0.0	00005770
	DO 450 J=1.JM	00005780
	SUM*0.0	00005790
	C1=0.0	00005800
	ZM(J)=0.0	00005810
	DO 430 I=1,IM	00005820
	W2=WORK2(J,1)	00005830
	IF (.NOT.LEV) GO TO 425	00005840
	IF (W2.GE.10.E5) GO TO 430	00005850
	CI=CI+1.0	00005860
	IF (W2.LT.0.0) GO TO 430	00005870
	SUM=SUM+W2	00005880
	GO TO 430	00005890
425	CI=CI+1.0	00005900
	IF (W2.GE.10.E5) GO TO 430	00005910
	IF (W2+10.E5.LE.0.0) W2=-(W2+10.E5)	00005920
	SUM=SUM+W2	00005930
430	CONTINUE	00005940
	CLAT=ABS(COS(LAT(J)))	00005950
	IF (CI.GT.0.0) ZM(J)=SUM/CI	00005960
	ZM(J)=SUM/FIM	00005970
	WTM=WTM+CLAT	00005980
450	ZMM=ZMM+ZM(J)+CLAT	00005990
	ZMM=ZMM/WTM	00006000
	SPOL=ZM(1)	00006010
	NPOL=ZM(JM)	00006020
C		00006030
	DATA NAMEL/ TOPOGRAPHY (DCEAN TEMP DEG CENT)	00006040
	DATA NAMEZ/ TOPOGRAPHY (SURFACE ELEVATION, HECTOFEET)	1/ 00006050
	DATA NL/13/	1/ 00006060
	RETURN	00006070
	END	0800000
		00006090

```
SUBROUTINE
                                                                                00006100
                             MAP6
                                                                                00006110
// DD DISP=OLD.DSN=MES727.ARN.COMMON
                                                                                00006120
     00 *
                                                                                00006130
      LOGICAL LEV, STAGJ, STAGI, ISL
COMMON /COUT/ ZM(46),SURF,LEV,ISL,NAMF(13)
EQUIVALENCE (SURF,SIGL)
DIMENSION NAMEL(13)
                                                                                00006140
                                                                                00006150
                                                                                00006160
                                                                                00006170
CCC
                                                                                00006180
       GEOPOTENTIAL HEIGHT SURFACE.
                                                                                00006190
      MAP TYPE 6
                                                                                00006200
                                                                                00006210
       IMM2=1M-2
                                                                                00006220
       I-ML=IMML
                                                                                J0006230
      STAGI= .FALSE.
                                                                                00006240
      STAGJ= .FALSE.
                                                                                00006250
      FIM=IM
                                                                                00006260
      L1=1
                                                                                00006270
      L2=2
                                                                                00006280
      PSK=SURF+*KAPA
                                                                                00006290
      HR=RGAS/2.
                                                                               00006300
       IMM2=IM-2
                                                                               00006310
      SIGLI=SIG(L1)
                                                                                00006320
      SIGL2=516(L2)
                                                                               00006330
      DO 110 I=1.NL
                                                                               00006340
 110
      NAME(I)=NAMEL(I)
                                                                               00006350
      DO 220 1=1.1M
                                                                               00006360
      IP1 = MOD(I, IM)+1
                                                                               00006370
      IM1 = MOD( I + IMM2 , IM) +1
                                                                               00006380
      DO 220 J=1.JM
                                                                               00006390
      SP=P(J.I)
                                                                               00006400
      PL1=(SIGL1*SP+PTROP)
                                                                               00006410
      PL1K=PL1++KAPA
                                                                               00006420
      PS1=(PL1-PTROP)/PL1
                                                                               C0006430
      PL2=(SIGL2+SP+PTRDP)
                                                                               00006440
      PL2K=PL2++KAPA
                                                                               00006450
      PS2=(PL2-PTROP)/PL2
                                                                               00006460
      IF (LEV) PSK=(SIGL+SP+PTR()P)++KAPA
                                                                               00006470
      PKDTK=KAPA+(PL2K-PL1K1+2.
                                                                               00006480
      PL1KS=FL1K**2
                                                                               00006490
      PL2KS=PL2K++2
                                                                               00006500
      PSKS=PSK++2
                                                                               00006510
      P1 TP2=PL 1K+PL2K+2.
                                                                               00006520
      XTZ=PSZ+(PLZKS-P1TPZ-PL1KS-Z.*PSKS+4.*PL1K*PSK1/PKUTK/PL2K
                                                                               00006530
      XT1=PS1+(PL2KS+P1TP2-PL1KS-4.*PL2K*PSK+2.*PSKS1/PKDTK/PL1K
                                                                               00006540
220 WORK2(J.I)=.01+((XT1+T(J.I.L1)+XT2+T(J.I.L2))+HR+VPHI4(J.I))/GRAV 00006550
```

C		00006560
410	ZMM=0.0	00006570
	WIM=0.0	00006580
	00 430 J=1.JM	00006540
	SUM=0.0	
	CLAT-AHS(DXYP(J))	00006600
	00 420 1=1.1M	00006610
420	SUM=SUM+WGRK2(J.1)	00006620
-& U		00006630
	ZM(J)=SUM/FIM	00006640
	WTM=WTM+CLAT	00006650
430	ZMM=ZMM+ZM(J)+CLAT	00006660
	ZMM=ZMM/WTM	00006670
	SPOL=ZM(1)	00006680
	NPOL=ZM(JM)	00006690
C		00006700
	DATA NAMEL/ GEOPOTENTIAL HEIGHT (HECTUMETERS)	1/ 00006710
	DATA NL/13/	00006720
	RFTURN	00006730
	END	00006740

	SUBRUUTINF	00006750
// (DD DISP=DLD.DSN=MES727.ABN.COMMON	00006760
11	00 +	00006770
Ć.		00006780
·	COMMON COURT PMALLS CORE	00006790
	COMMON /COUT/ ZM(46).SURF.LEV.TSL.NAMF(13)	0006800
	LOGICAL LEV. STAGJ. STAGI. ISL Dimension Namel (13)	00006810
C	CHREACE DECEMBE MAD THE T	000067.20
•	SURFACE PRESSURE. MAP TYPE 7	00006 830
	L2=2	00005840
C	55-6	00006850
	F M = M	00006860
	1MM2=1M=2	00006870
	JMM1=JM=1	00006880
	STAGJ . FALSF.	00006890
	STAGI = . FALSF.	00006900
	\$161 = \$16(1)	00006910
	\$163*\$16(2)	00006920
	FLR=.5+,1828/(30.48+GRAV)	00006930
C	1 Ch - 6 7 4 10 6 0 / (5 () 6 4 M # () A V)	00006940
•	00 110 1=1.NL	00006950
110		00006960
C	WHAT I I SHAME []]	00006970
•	7 MM=0.0	00006980
	00 118 J=1.JM	00006990
118	ZM(J)=0.0	00007000
C	Em (3 / 2 () 4 ()	00007010
•	DO 128 1=1.1M	00007020
	1M1=MOD(I+IMM2+IM)+I	00007030
	TPT=MOD(T+TMT+1	00007040
	DO 12A J=1+JM	00007050
	PH14=VPH14(J,T)	00007060
	PJ1=P(J-1)	00007070
C		00007080
č	T14=1(H(03T(J.])) T4=T14/10.	00007090
Č		00007100
C	EXTRAPOLATED SURFACE AIR TEMPERATURE T1=T(J+1+L1)	00007110
	T3=T(J+1+L7)	00007120
	T4=1.5+13-().5+T1	00007130
	DTM=BCA5 4474 - F. S.	00007140
	RTM=RGAS*(T4+FLR*PHT4)	00007150
	ACC=(PJ]+PTHNP)+FXP(PH]4/HTM)-PSL	00007160
124	ZM(J)=ZM(J)+ACC	00007170
160	MORK 5 (1+1) = VCC	00007180

C			00007190
C			00007200
	WTM=0.0		00007210
	DD 158 J=1.JM		00007220
	2M(J)=2M(J)/FIM		00007230
	WTM=WTM + ABS(DXYP(J))		00007240
	158 ZMM=ZMM+ZM(J)+ABS(DXYP(J))		00007250
C	ZMM IS GLOBAL MEAN SURFACE PRESSURE		00007260
	ZMM=ZMM/WTM		00007270
	SPOL=WORK2(1.1)		00007280
	NPOL=WORK2(JM.1)		00007290
C			00007300
	OATA NAMEL/'SFA LEVEL PRESSURE UNSMOOTHED (MB-1000.)	1/	00007310
	OATA NL/13/		00007320
	RETURM		00007330
C			00007340
	ENO		00007350

```
SUBROUTINE
                                                                         00007360
// DD 01SP=OLD.OSN=MES727.ABN.COMMON
                                                                         00007370
                                                                         00007380
      00 .
      COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
                                                                         00007390
                                                                         00007400
      LOGICAL LEV. STAGJ. STAGI. ISL
                                                                         00007410
      EQUIVALENCE (SIGL, SURF)
                                                                         00007420
      DIMENSION NAMEL(13)
                                                                         00007430
     TOTAL HEATING, MAP TYPE A
                                                                         00007440
                                                                         00007450
      OIMENSION HZ1(100) +HZ3(100)
                                                                         00007460
      FIM=IM
                                                                         00007470
C
                                                                         00007460
      STAGJ=.FALSE.
                                                                         00007490
      STAGI . FALSF.
                                                                         00007500
      L1=1
                                                                         00007510
      L2=2
                                                                        00007520
      SIGL1=SIG(L1)
                                                                        00007530
      SIGL2=SIG(L2)
                                                                        00007540
      DSIG=1./(SIGL2-SIGL1)
                                                                        00007550
      SURFMT=SURF-PTROP
                                                                        00007560
      IF (LEV) SIGX=SIGL
                                                                        00007570
C
                                                                        00007580
     DO 110 I=1.NL
                                                                        00007590
110
     NAME(1)=NAMEL(1)
                                                                        00007600
                                                                        00007610
     DO 220 1=1.1M
     DO 220 J=1.JM
                                                                        00007620
                                                                        00007630
     IF (.NOT.LEV) SIGX=SURFMT/P(J.1)
     H1=TLH(PT(J.T))
                                                                        00007640
                                                                        00007650
     H1=H1/100.
                                                                        00007660
     H3=IKH(PT(J.I))
                                                                        00007670
     H3=H3/100.
                                                                        00007680
     IF (J.NE.1) GO TO 220
                                                                        00007690
     HZ1(J)=H1
                                                                        00007700
     HZ3(J)=H3
220 WORK2(J.1)=DSIG+((SIGL2-SIGX)+H1 + (SIGX-SIGL1)+H3)
                                                                        00007710
                                                                        00007720
```

С			(100077770
	90 118 J=1,JM		00007730 00007740
118	ZM(J)=0.0		00007750
C			00007760
	ZMM=0.0		00007770
	WTM=0.0		00007780
	DO 430 J=1.JM		00007780
	SUM=0.0		
	CLAT=ABS(DXYP(J))		00007800
	00 420 1=1.1M		
420	SUM=SUM+WORK2(J.1)		00007820
	ZM(J)=SUM/FIM		00007830 00007840
	WTM=WTM+CLAT		00007850
430	ZMM=ZMM+ZM(J)+CLAT		00007860
	ZMM=ZMM/WTM		
	SPOL=ZM(1)		00007870
	NPOL=ZM(JM)		00007880
C			00007890
_	DATA NAMEL/'TOTAL HEATING (DEG CENT/DAY)	4.4	00007900
	DATA NL/13/	• /	00007910
	RETURN		00007920
C			00007930
	END		00007940
			00007950

```
SUBRUUTINE
 // OD DISP=OLD.DSN=MES727.AHN.COMMON
                                                                          00007960
                                                                          00007970
 11
       00 •
                                                                          00007980
 C
                                                                          00007997
       LOGICAL LEV. STAGI. STAGJ. ISL
                                                                          00008600
       DIMENSION NAMEL (13)
                                                                          00008010
       COMMON /COUT/ ZM(46).SURF.LEV.1SL.NAME(13)
                                                                          00008020
       FOULVALENCE (SURF.SIGL)
                                                                          00008030
                                                                          00008040
 C
       LARGE SCALE PRECIPITATION. MAP TYPE 9
                                                                          00008050
 C.
                                                                          00008060
       F1M = 1M
                                                                          00008070
       FJM = JM
                                                                          000080R0
       STAGI . FALSE.
                                                                          00008090
       STAGJ . FALSF.
                                                                          0000R100
 C
                                                                         00008110
      DO 110 1=1.NL
                                                                         00008120
 110
      NAME(1)=NAMEL(1)
                                                                         0000R130
                                                                         0000R140
      DO 220 1=1.IM
                                                                         00008150
      DO 220 J=1.JM
                                                                         00008160
      PLSC=1RH(03T(J,1))
                                                                         00000170
 550
      WORK2(J.1)=PLSC/10.
                                                                         00008180
                                                                         00008190
      0.0=MMS
                                                                         00008200
      MTM=0.0
                                                                         00008210
      DO 450 J=1.JM
                                                                         00008220
      SUM=0.0
                                                                         00008230
      DO 430 1=1.1M
                                                                         00008240
 430 SUM=SUM + WORK2(J.))
                                                                         00008250
      CLAT-ABS(DXYP(J))
                                                                         00008260
      ZM(J)=SUM/FIM
                                                                         00008270
      WTM=WTM+CLAT
                                                                        00008280
 450 ZMM=ZMM+ZM(J)+CLAT
                                                                        0000R290
      ZHM=ZMM/HTM
                                                                        0000#300
     SPOL=ZM(1)
                                                                        00008310
      NPOL=ZM(JM)
                                                                        0000A320
C
                                                                        0000B330
     DATA NAMEL/ LARGE SCALE PRECIPITATION (MM/DAY)
                                                                        00008340
     DATA NL/13/
                                                                     1/ 00008350
     RETURN
                                                                        00008360
     FND
                                                                        00008370
                                                                        000008380
```

```
SUBROUTINE
                                                                             00008390
                     MAP10
                                                                             00008400
                                                                             00008410
 // OO OISPOUD. DSN=MES727. ABN. COMMON
                                                                             00008420
          DO
                                                                             00008430
       LOGICAL LEV. STAGJ. STAGI. ISL
COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
                                                                             00008440
                                                                             00008450
       EQUIVALENCE (SURF.SIGL)
                                                                             00008460
       DIMENSION NAMEL(13)
                                                                             00008470
       01MENS10N CONM (46,72)
                                                                             00008480
C
C
                                                                             00008490
       VERTICAL VELOCITY, MAP TYPE 10
                                                                             00008500
                                                                             00008510
       FIM-IM
                                                                             00008520
       IMM2-1M-2
                                                                            00008530
       JMM1-JM-1
                                                                             00008540
       STAGJ .. FALSE.
                                                                            00008550
       STAGIO. FALSE.
                                                                            00008560
C
                                                                            00008570
       ON 110 1-1.NL
                                                                            00008580
 110
      NAME(1)=NAMEL(1)
                                                                            00008590
C
                                                                            00008600
 2149 L-1
                                                                            00008610
 2150 00 2160 I=1.IM
                                                                            00008620
      IP1=MOD(1,IM)+1
                                                                            00008630
      00 2160 J=2.JMM1
                                                                            00008640
      PU(J,1)=0.25+(0YU(J)+U(J,1,L)+DYU(J+1)+U(J+1,1,L))
                                                                            00008650
 2160 CONTINUE
                                                                            00008560
C
                                                                            00008670
      CALL AVRX(11)
                                                                            00008680
C
                                                                            00008690
      DO 2180 I=1.1M
                                                                            00008700
      IP1=M00(1.IM)+1
                                                                            00008710
      IM1-MOD(1+IMM2, IM)+1
                                                                            00000720
      00 2170 J=2,JMM1
                                                                            00008730
 2170 PU(J.1)=PU(J.1)+(P(J.1)+P(J.1P1))
                                                                            00008740
      DO 2180 J=2.JM
                                                                            00008750
      PV(J.1)=0.25+0XU(J)+(V(J.1.L)+V(J.1M1.L))+(P(J.1)+P(J-1.1))
                                                                            00008760
 2180 CONTINUE
                                                                            00008770
                                                                            00008780
CC
      EQUIVALENT PU AT POLES. PVII-II IS USED AS A WORKING SPACE.
                                                                            00008790
                                                                            00008800
      VM1=0.0
                                                                            00008810
      VM2-0.0
                                                                            00008820
      DO 2185 1-1.1M
                                                                            00008830
      VM1=VM1+PV(2+1)
                                                                            00008840
2185 VM2=VM2+PV(JM+1)
                                                                            00008850
      VM1=VM1/FIM
                                                                            00008860
      VM2=VM2/FIM
                                                                            00008870
      PV(1,1)=0.0
                                                                            00008880
```

	DO 2190 1=2.1M	00008890
2190	PV(1.1)=PV(1.1-1)+(PV(2.1)-VM1)	00008900
	VM1=0.0	00008910
	DO 2192 I=1.IM	00008920
2192	VM1=VM1+PV(1,1)	00008930
	VM1=VM1/F1M	00008940
	DO 2195 1-1.IM	00008950
2195	PU(1.1)=-(PV(1.1)-VM1)+3.0	00008960
	PV(1.1)=0.0	00008970
	00 2200 1=2.1M	00008980
2200	PV(1.1)=PV(1.1-1)+(PV(JM.1)-VM2)	00008990
	VM2=0.0	00009000
	00 2202 1=1.1M	00009010
2202	VM2=VM2+PV(1,1)	00009020
	VM2=VM2/F1M	00009020
	DO 2205 1=1.1M	00009040
2205	PU(JM-1)=(PV(1-1)-VM2)+3-0	00009050
	DO 2400 1=1.1M	00009060
	1M1=MOD(1+1MM2,1M)+1	00009080
	00 2400 J=1.JM	00009080
	1F (J.EO.1) CONVM=-PV(2,1)+0.5	00009080
	IF (J.EO.JM) CONVM=PV(JM.1)+0.5	
	IF (J.GT.1 .AND. J.LT.JM) CONVM=-(PU(J.I) -PU(J.IMI)	00009100
	+PV(J+1.1)-PV(J.1))+0.5	00009110
	1F (L.FO.1) CUNM(J.1)=CONVM	00009120
	IF (L.FO.2) PV(J.1)=CONVM	00009130
2400	CONTINUE	00009140
£ 400	IF(L.FQ.2) GO TO 2410	00009150
	L=2	00009160
	GO TO 2150	00009170
2410	CONTINUE	00009180
7710	CONTINUE	00009190

```
00009200
C
                                                                            00009210
       CONM IS MASS CONVERGENCE AT L=1 AND PV IS THAT AT L=2.
C
                                                                            00009220
C
                                                                            00009230
 2411 PH1=0.0
      PH2=0.0
                                                                            00009240
                                                                            00009250
      PP3=0.0
                                                                            00009260
      PB4=0.0
                                                                            00009270
      DO 2402 1=1.1M
      PB1=PB1+CONM(1,1)
                                                                            00009280
                                                                            00009290
      PB2=PB2+CONM(JM.1)
                                                                            00009300
      P83=P83+PV(1.1)
 2402 PB4=PB4+PV(JM.1)
                                                                            00009310
                                                                            00009320
      PB1=PR1/FIM
                                                                            00009330
      PA2=PB2/FIM
      PB3=PB3/FIM
                                                                            00009340
                                                                            00009350
      PB4=PB4/FIM
                                                                            00009360
      UN 2405 I=1.IM
                                                                            00009370
      CONM(1,1)=PB1
                                                                            00009380
      CONMIJM. 11=PB2
                                                                            00009390
      PV(1.1)=PB3
                                                                            00009400
 2405 PVIJM, 11=PB4
                                                                            00009410
      DO 2420 1=1.1M
                                                                            00009420
      00 2420 J=1.JM
      WW=CONM(J.I)-PV(J.I)
                                                                            00009430
                                                                            00009440
      WORK2(J.1)=3600.+WW/(2.0+DXYP(J))
                                                                            00009450
 2420 CONTINUE
                                                                            00009460
C
                                                                            00009470
 410
      ZMM=0.0
      WTM=0.0
                                                                            00009480
                                                                            00009490
      DO 430 J=1.JM
      SUM=0.0
                                                                            00009500
                                                                            00009510
      00 420 I=1.IM
      SUM=SUM+WORK2(J.1)
                                                                            00009520
 420
                                                                            00009530
      CLAT=ABS(DXYP(J))
                                                                            00009540
      ZM(J)=SUM/FIM
                                                                            00009550
      WTM=WTM+CLAT
                                                                            00009560
      ZMM=ZMM+ZM(J)+CLAT
                                                                            00009570
      ZMM=ZMM/WTM
                                                                            00009580
      NPOL=ZM(JM)
                                                                            00009590
      SPOL=ZMI11
                                                                            00009600
C
                                                                         1/ 00009610
      DATA NAMEL/'SIGMA VERTICAL VELOCITY (MB/HR)
                                                                            00009620
      DATA NL/13/
                                                                            00009630
      RETURN
                                                                            00009640
C
                                                                            00009650
C
                                                                            00009660
      END
```

```
SUBROUTINE
                                                                          00009670
                    AVRX(K)
                                                                          00009680
1.
                                                                          00009690
// OD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                          00009700
11
      00
                                                                          00009710
       THIS SUBROUTINE USES UT(1.1.1) AS A WORKING SPACE
C
                                                                          00009720
C
                                                                          00009730
      J-ML= IMML
                                                                          00009740
      1MM2=1M-2
                                                                          00009750
      JE=JM/2+1
                                                                          00009760
      OEFF=DYP(JE)
                                                                          00009770
      00 150 J=2.JMM1
                                                                          00009780
      ORAT=OEFF/DXP(J)
                                                                          00009790
      IF (DRAT .LT. 1.) GO TO 150
                                                                          00009800
      ALP=0.125+(DRAT-1.)
                                                                          00009810
      NM=DRAT
                                                                          00009820
      FNM=NM
                                                                          00009830
      ALPHA-ALP/FNM
                                                                          00009840
      DO 150 N=1.NM
                                                                          00009850
      00 120 1=1.1M
                                                                          00009860
      1P1=MOD(1.1M)+1
                                                                          00009870
      IM1=MOD(1+IMM2+IM)+1
                                                                         00009880
 120 UT(1.1.1)=OT(J.1.K)+ALPHA*(OT(J.IP1.K)+OT(J.IM1.K)-2.*QT(J.1.K))
                                                                         00009890
      DO 130 1=1.1M
                                                                         009/09900
 130
      OT(J,1,K)=UT(1,1,1)
                                                                         00009910
150
C
      CONTINUE
                                                                         00009920
                                                                         00009930
      RETURN
                                                                         00009940
      END
                                                                         00009950
```

```
SUBROUTINE
                 MAP11
                                                                              00009960
                                                                              00009970
 // OD OISP=OLD.OSN=MES727.AHN.COMMON
                                                                              00009980
          00
                                                                              00009990
       LOGICAL LEV. STAGI.STAGJ. 1SL
COMMON /COUT/ 2M(46).SURF.LFV.ISL.NAME(13)
                                                                              00010000
                                                                              00010010
       EQUIVALENCE (SURF, SIGL)
                                                                              00010020
       DIMENSION NAMEL(13)
                                                                              00010030
 CCC
                                                                              00010040
       RELATIVE HUMIDITY, MAP TYPE 11
                                                                              00010050
                                                                              00010060
       FIM = IM
                                                                             00010070
       FJM = JM
                                                                             00010080
       STAGI = . FALSE .
                                                                             00010090
       STAGJ=.FALSF.
                                                                             0010100
C
                                                                             00010110
      00 110 I=1.NL
                                                                             00010120
      NAME (1) = NAMEL (1)
 110
                                                                             00010130
                                                                             00010140
      MI.1=1 055 00
                                                                             00010150
                                                                             00010160
      ES3 = 10.000(8.4051-2353.0/T(J.1.2))
                                                                             00010170
      P3CB = 1.75+P(J.1)+PTR()P1/10.0
                                                                             00010180
      QS3 = .622*FS3/(F3CB-ES3)
                                                                             00010190
      03R = 03(J.1)
                                                                             00010200
      RH3 = Q3R/Q53
                                                                             01501000
  220 WORK 2(J+1) = RH3+100.
                                                                             00010220
C
                                                                            00010230
410 WS=0.0
                                                                            00010240
      WN=0.0
                                                                            00010250
      00 415 I=1+IM
                                                                            00010260
      WS=WS+WORK2(1+1)
                                                                            00010270
415
     WN=WN+WORK2(JM+1)
                                                                            00010280
      WS=WS/FIM
                                                                            00010290
      WN=WN/FIM
                                                                            00010300
     DO 420 1=1.1M
                                                                            00010310
      WORK 2 (1 . 1 ) = WS
                                                                            00010320
    WORK2(JM,1)=WN
                                                                            00010330
                                                                            00010340
```

C		00010350
	7.MM=0.0	00010360
	WTM=0.0	00010370
	00 450 J=1+JM	00010380
	SUM=0.0	00010390
	00 430 I=1.IM	00010400
430	SUM=SUM + WORK2(J+1)	00010410
	CLAT=ABS(DXYP(J))	00010420
	ZM(J)=SUM/FIM	00010430
	WTM=WTM+CLAT	00010440
450	ZMM=ZMM+ZM(J)*CLAT	00010450
	ZMM=ZMM/WTM	00010460
	SPOL=ZM(1)	00010470
	NPOL=ZM(JM)	00010480
C		00010490
	DATA NAMEL/ RELATIVE HUMIDITY (PERCENT)	1/ 00010500
	DATA NL/13/	00010510
	RETURN	00010520
	ENI)	00010530

```
SUBROUTINE
                                                                              00010540
                 MAP12
                                                                              00010550
 /*
                                                                              00010560
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00010570
           DD
                                                                              00010580
        LOGICAL LEV, STAGI, STAGJ, ISL
COMMON /COUT/ ZM(46), SURF, LEV, ISL, NAME(13)
                                                                              00010590
                                                                              00010600
        EQUIVALENCE (SURF, SIGL)
                                                                              00010610
       DIMENSION NAMEL(13)
                                                                              00010620
 C
                                                                              00010630
 C
       PRECIPITABLE WATER IN CM. MAP TYPE 12
 C
                                                                              00010640
                                                                             00010650
       FIM = IM
                                                                             00010660
       STAGI = . FALSE .
                                                                             00010670
       STAGJ=.FALSE.
                                                                             00010680
 C
                                                                             00010690
       DO 110 I=1.NL
                                                                             00010700
  110
       NAME(I)=NAMFL(I)
                                                                             00010710
 C
                                                                             00010720
       DO 220 I=1, IM
                                                                             00010730
       00 220 J=1,JM
                                                                             00010740
       WORK2(J+I) = Q3(J+I)*P(J+I)*O*5*(10*O/GRAV)
 220
                                                                             00010750
C
                                                                             00010760
 410
       WS=0.0
                                                                             00010770
       WN=0.0
                                                                             00010780
       DO 415 I=1.IM
                                                                             00010790
       WS=WS+WORK2(1,1)
                                                                             00010800
 415
       WN=WN+WORK2(JM,I)
                                                                             00010810
       WS=WS/FIM
                                                                             00010820
       WN=WN/FIM
                                                                             00010830
       DO 420 I=1.IM
                                                                             00010840
       WORK 2(1,1)=WS
                                                                             00010850
 420
       WORK2(JM, I)=WN
                                                                             00010860
                                                                             00010870
       ZMM=0.0
                                                                             00010880
       WTM=0.0
      DO 450 J=1.JM
                                                                             00010890
                                                                             00010900
       SUM=0.0
                                                                            00010910
       DO 430 I=1.IM
                                                                             00010920
 430
       SUM=SUM + WORK2(J+I)
                                                                            00010930
       CLAT=ABS(DXYP(J))
                                                                            00010940
       ZM(J)=SUM/FIM
                                                                            00010950
      WTM=WTM+CLAT
                                                                            00010960
      ZMM=ZMM+ZM(J)+CLAT
 450
                                                                            00010970
      ZMM=ZMM/WTM
                                                                            00010980
      SPOL=ZM(1)
                                                                            00010990
      NPOL=ZM(JM)
                                                                            00011000
C
                                                                            00011010
      DATA NAMEL/ PRECIPITABLE WATER (CM)
                                                                         1/ 00011020
      DATA NL/13/
                                                                            00011030
      RETURN
                                                                            00011040
      END
                                                                            00011050
```

```
ROUTI
                  MAP13
                                                                             00011060
  /*
                                                                             00011070
  // OD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                             00011080
           DD
                                                                             00011090
        LOGICAL LEV. STAGI.STAGJ. ISL
                                                                            00011100
        COMMON /COUT/ ZM(46)+SURF+LEV+1SL+NAME(13)
                                                                            00011110
        EQUIVALENCE (SURF.SIGL)
                                                                            00011120
        DIMENSION NAMEL(13)
                                                                            00011130
  C
                                                                            00011140
        CONVECTIVE PRECIPITATION (MM/DAY) MAP TYPE 13
  C
                                                                            00011150
  C
                                                                            00011160
        STAGI = . FALSE .
                                                                            00011170
        STAGJ=.FALSF.
                                                                            00011180
        FIM = 1M
                                                                            00011190
  C
                                                                            00011200
        DO 110 I=1.NL
                                                                            00011210
  110
       NAME(1)=NAMEL(1)
                                                                            00011220
                                                                            00011230
        DO 250 1=1.1M
                                                                            00011240
       DO 250 J=1,JM
                                                                            00011250
       CP= 1RH(UT(J.1.21)
                                                                            00011260
  250
       WORK2(J.1)=CP/10.
                                                                            00011270
 C
                                                                            00011280
  410
       WS=0.0
                                                                            00011290
       WN=0.0
                                                                           00011300
       DO 415 I=1.IM
                                                                           00011310
       WS=WS+W(IRK2(1+1)
                                                                           00011320
  415
       WN=WN+WNRK2(JM+1)
                                                                           00011330
       WS=WS/FIM
                                                                           00011340
       WN=WN/FIM
                                                                           00011350
       DO 420 1=1.1M
                                                                           00011360
       WORK 2(1.1)=WS
                                                                           00011370
  420
      WORK2(JM, I)=WN
                                                                           00011380
                                                                           00011390
       Z MM=0.0
                                                                           00011400
      WTM=0.0
                                                                           00011410
      DO 450 J=1,JM
                                                                           00011420
      SUM=0.0
                                                                          00011430
      DO 430 I=1.1M
                                                                          00011440
      SUM=SUM + WORK2(J.1)
                                                                          00011450
      CLAT=ABS(DXYP(J))
                                                                          00011460
      ZM(J)=SUM/FIM
                                                                          00011470
      WTM=WTM+CLAT
                                                                          00011480
 450 ZMM=ZMM+ZM(J)*CLAT
                                                                          00011490
      ZMM=ZMM/WTM
                                                                          00011500
      SPOL=ZM(1)
                                                                          00011510
      NPOL=ZM(JM)
                                                                          00011520
C
                                                                          00011530
     DATA NAMEL/*CONVECTIVE PRECIPITATION (MM/DAY)
                                                                          00011540
      DATA NL/13/
                                                                       1/ 00011550
      RETURN
                                                                          00011560
      END
                                                                          00011570
                                                                          000)1580
```

```
UBROUTI
                                                                          00011590
                MAP14
                                                                           00011600
 // OD UISP=OLO.USN=MES727.ABN.COMMON
                                                                          00011610
 11
          00
                                                                           00011620
                                                                          00011630
       LOGICAL LEV. STAGI.STAGJ. ISL
                                                                          00011640
       COMMON /COUT/ ZM(46).SURF.LEV. (SL. NAME(13)
                                                                          00011650
       EQUIVALENCE (SURF.SIGL)
                                                                          00011660
       DIMENSION NAMEL(13)
                                                                          00011670
 C
                                                                          00011680
       EVAPORATION (E4 IN MM/DAY). MAP TYPE 14
 C
                                                                          00011690
                                                                          00011700
       STAGI .. FALSE .
                                                                          00011710
       FIM-IM
                                                                          00011720
       STAGJ=.FALSE.
                                                                          00011730
       IMM1=IM-1
                                                                          00011740
       1MM2=1M-2
                                                                          00011750
      J-ML= JM-1
                                                                          00011760
                                                                          00011770
      JMM2=JM-2
      00 110 1=1.NL
                                                                          00011780
 110
      NAME(1)=NAMEL(1)
                                                                          00011790
                                                                          00011800
      UN 250 1=1.1M
                                                                          00011810
      DO 250 J=1.JM
                                                                         00011820
      E4= [RH(TT(J.1.2))
                                                                         00011830
      WORK2(J.1)=F4/10.
 250
                                                                         00011840
C
                                                                         00011850
                                                                         00011860
 410
     WS=0.0
                                                                         00011870
      WN=0.0
                                                                         00011880
      UN 415 1-1-1M
                                                                         00011890
      WS=WS+WORK2(1+1)
                                                                         00011900
     WN=WN+WORK2(JM,1)
                                                                         00011910
                                                                         00011920
      WS=WS/FIM
     WN=WN/FIM
                                                                         00011930
     DO 420 1=1.1M
                                                                         00011940
     WORK2(1.1)=WS
                                                                         00011950
420
     WORK 21JM+11=WN
                                                                         00011960
                                                                         00011970
```

C		00011980
•	Z MM=0.0	00011990
	WTM=0.0	00012000
	DO 450 J=1.JM	00012010
	SUM=0.0	00012020
	00 430 1=1.1M	00012030
430	SUM=SUM + WORK2(J.1)	00012040
	CLAT=ABS(DXYP(J))	00012050
	ZM(J)=SUM/FIM	00012060
	WTM=WTM+CLAT	00012070
450	ZMM=ZMM+ZM(J)+CLAT	00012060
	ZMM=ZMM/WTM	00012090
	SPOL=ZM(1)	90012100
	NPOL=ZM(JM)	00012110
C		00012120
	DATA NAMEL/'EVAPORATION (MM/DAY)	1/ 00012130
	OATA NL/13/	00012140
	RETURN	00012150
	ENO	00012160

```
UBRDUTINE
                                                                            00012170
                 MAP15
                                                                            00012180
  // DD DISP=OLD.OSN=MES727.ARN.CUMMON
                                                                            00012190
                                                                            00012200
           00
        OTHENSION NAMEL (13)
                                                                            01221000
        COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAMF(13)
                                                                            00012220
        LOGICAL LEV. STAGJ. STAGI. ISL
                                                                            00012230
  C
                                                                            00012240
        SENSIBLE HEAT FLUX (F4 IN TENS OF CALOCHOR-200AY00-1) MAP 15
  C
                                                                            00012250
                                                                            00012260
        STAGI = . FALSF .
                                                                            00012270
                                                                            00012280
        STAGJ=.FALSF.
                                                                            00012290
        FIM=IM
        | MM1 = | M-1
                                                                            00012300
                                                                            00012310
        IMM2=1M-2
                                                                            00012320
        I-ML= IMML
                                                                            00012330
        JMM2=JM-2
       00 110 1=1.NL
                                                                            00012340
                                                                           00012350
  110
       NAME(1)=NAMEL(1)
                                                                           00012360
                                                                           00012370
       00 350 I=1.IM
       00 350 J=1.JM
                                                                           00012380
                                                                           00012390
       F4=1LH(TT(J.1.2))
  350
       WORK 2(J.1)=F4/10.
                                                                           00012400
                                                                           00012410
 C
  410
       WS=0.0
                                                                           00012420
                                                                           00012430
       WN=0.0
       00 415 I=I.1M
                                                                           00012440
       WS=WS+WORK2(1+1)
                                                                           00012450
  415 WN=WN+WORK2(JM+1)
                                                                           00012460
       WS=WS/FIM
                                                                           00012470
                                                                           00012480
       WN=WN/FIM
       On 420 1=1.1M
                                                                           00012490
                                                                           00012500
       WORK2(1.1)=WS
  420
      WORK2(JM.I)=WN
                                                                           00012510
                                                                           00012520
       ZMM=0.0
                                                                           00012530
      WTM=0.0
                                                                           00012540
      00 450 J=1.JM
                                                                           00012550
                                                                           00012560
      SUM=0.0
      00 430 I=I.IM
                                                                           00012570
 430 SUM=SUM + WORK2(J+1)
                                                                           00012580
      CLAT=AHS(DXYP(J))
                                                                          00012590
      ZM(J)=SUM/FIM
                                                                          00012600
                                                                          00012610
      WIM=WIM+CLAT
      7MM=ZMM+7M(J)+CLAT
                                                                          00012620
      MTH/MMZ=MMY
                                                                          00012630
      SPOL=ZM(1)
                                                                          00012640
                                                                          00012650
      NPOL=7M(JM)
C
                                                                          00012660
      DATA NAMEL/ SENSIBLE HEAT FLUX (TO CAL/CM++2/DAY)
                                                                          00012670
      DATA NL/13/
                                                                       1/ 00012680
                                                                          00012690
      RETURN
C
                                                                          00012700
                                                                          00012710
      FND
                                                                          00012720
```

```
SUBROUTINE
                                                                              00012730
                                                                              00012740
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00012750
 11
       00 •
                                                                              00012760
       LOGICAL LEV. STAGJ. STAGI. ISL
COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
EQUIVALENCE (SURF.SIGL)
                                                                              00012770
                                                                              00012780
                                                                              00012790
       DIMENSION NAMEL(13)
                                                                              00012800
 C
 C
                                                                              00012810
      LOW LEVEL CONVECTION (DEG) MAP TYPE 16
                                                                              00012820
                                                                             00012830
       FIM=IM
                                                                              00012840
       STAGJ=, FALSF.
                                                                             00012850
       STAGI . FALSE.
C
                                                                              00012860
                                                                              00012870
       00 110 I=1.NL
                                                                             08851000
 110
      NAME(I)=NAMEL(I)
                                                                             00012890
                                                                             00012900
       DO 220 I=1.1M
                                                                             00012910
       DO 220 J=1.JM
       FLSC=ILH(UT(J.1.21)
                                                                             00012920
                                                                             00012930
 220 WORK2(J.1)=FLSC/10.
                                                                             00012940
 410 ZMM=0.0
                                                                             00012950
                                                                             00012960
       O.O-MTW
                                                                             00012970
      DO 430 J=1.JM
                                                                             00012980
      SUM=0.0
                                                                             00012990
      DO 420 1=1.1M
 420 SUM=SUM+WORK2(J.1)
                                                                             00013000
                                                                             00013010
      CLAT=ABS(DXYP(J))
                                                                             00013020
      ZM(J)=SUM/FIM
                                                                             00013030
      WTM=WTM+CLAT
 430 ZMM=ZMM+ZM(J)+CLAT
                                                                             00013040
                                                                             00013050
      ZMM=ZMM/HTM
                                                                             00013060
      NPOL=ZM(JM)
                                                                             00013070
      SPOL=ZM(1)
                                                                             00013060
C,
                                                                             00013090
      DATA NAMEL/ LOW LEVEL CONVECTION (DEG CENT)
                                                                          1/ 0001310G
      DATA NL/13/
                                                                             00013110
      RETURN
C
                                                                             00013120
                                                                            00013130
      END
                                                                            00013140
```

	SUBROUTINE	00013150
	* MAP 17	00013160
// 0	O OISP=OLO.OSN=MES727.ABN.COMMON	00013170
//	00 •	00013180
	LOGICAL LEV, STAGJ, STAGI, ISL	00013190
	COMMON /COUT/ ZM(46), SURF, LEV, ISL, NAMF(13)	00013140
	EQUIVALENCE (SURF.SIGL)	00013200
	DIMENSION NAMEL(13)	00013210
C		00013220
C	WIND DIRECTION. MAP TYPE 17	
C	(NORMALLY POLAR PROJECTED)	00013240
C		00013250
	P102=P1+.5	00013260
	P102T3=P1D2+3.	00013270
	P1T2=P1+2.	00013280
	RP1035=35./P1T2	00013290
C		00013300
	00 220 1=1.1M	00013310
	00 220 J=1.JM	00013320
	HU=HORK1(J,I)	00013330
	WV=WORK2(J.1)	00013340
	K*1	00013350
	IF (WU .GE. O.) K=K+1	00013360
	1F (WV.EO. 0.) GO TO (103,104),K	00013370
	IF (WV .GE. 0.) K=K+2	00013380
	1F (MU .EO. O.) K=K+4	00013390
	ANG=ATAN(HU/HV)	00013400
	GO TO (220,101,102,102,101,101,102,102), K	00013410
101	ANG=ANG+PIT2	00013420
	GO TO 220	00013430
102	ANG ANG+PI	00013440
	GO TO 220	00013450
103	ANG=P102	00013460
_	GO TO 220	00013470
104	ANG=P102T3	00013480
220	WIRK2(J+1)=ANG*RPID35+1.0	00013490
		0001 3500

C		
	DO 110 1=1,NL	00013510
110	NAME(1)=NAMEL(1)	00013520
	STAGJ=.TRUE.	00013530
	STAG1=.TRUE.	00013540
	F[M=[M	00013550
C		00013560
410		00013570
	WTM=0.0	00013580
	DO 430 J=1.JM	00013590
	SUM=0.0	00013600
	00 420 I=1,1M	00013610
420	SUM=SUM+WORK2(J.1)	00013620
	CLAT=ABS(COS(LAT(J)))	00013630
	ZM(J)=SUM/F1M	00013640
	HTM=HTM+CLAT	00013650
4 30	ZMM=ZMM+ZM(J)+CLAT	00013660
	ZMM=ZMM/WTM	00013670
	SPOL=ZM(1)	00013680
	NPOL=ZM(JM)	00013690
C		00013700
	DATA NAMEL/ WIND DIRECTION	00013710
	UATA NL/13/	1/ 00013720
_	RETURN	00013730
C		00013740
C	END	00013750
	END	00013760
		00013770

```
MAP 18
                 UBROUTINE
                                                                               00013780
                                                                               00013790
 // OD DISPOLD, DSN=MES727. ARN. COMMON
                                                                               00013800
        00 .
        LOGICAL LEV. STAGJ. STAGI. 1SL
COMMON /COUT/ 2M(46).SURF.LEV.[SL.NAMF(13)
                                                                               00013810
                                                                               00013820
                                                                               00013830
        EQUIVALENCE (SURF.SIGL)
                                                                               00013840
        DIMENSION NAMEL(13)
                                                                              00013850
 C
                                                                              00013860
 C
       MAP WIND DIRECTION. MAP TYPE IN
 C
                                                                              00013870
       (MEANINGFUL ON CLYNDRICAL PROJECTION ONLY)
 Č
                                                                              00013880
                                                                              00013890
       P102=P1+.5
                                                                              00013900
       P10213-P102+3.
                                                                              00013910
       PIT2=P1+2.
                                                                              00013920
       POT18=18./P1
                                                                              00013930
                                                                              00013940
                                                                              00013950
       DO 220 1=1.1M
                                                                              00013960
       00 220 J=1,JM
                                                                              00013970
       WU-WORK1(J.1)/DXU(J)
                                                                              00013980
       WV=WORK2(J.1)/DYV(J)
                                                                              00013990
       IF (WU .EQ. D. .AND. WY .FQ. O.) WY=1.
                                                                              00014000
       ANG=ATANZ (WII, WV)
                                                                              00014010
       IF (ANG .LT. O.) ANG=ANG+PIT2
                                                                              00014020
       WORK2(J.1) = AMOD (ANG+POT18+18.,36.)
 220
                                                                              00014030
                                                                              00014040
       00 110 I=1.NL
                                                                              00014050
 110 NAME(1)=NAMEL(1)
                                                                              00014060
       FIMOIM
                                                                              00014070
       STAGJ .. TRUE.
                                                                              00014080
       STAGI .. TRUE.
                                                                             00014090
C
                                                                              00014100
 410
      2 MM=0.0
                                                                             00014110
       WTM=0.0
                                                                             00014120
      00 430 J=1.JM
                                                                             00014130
       SUM=0.0
                                                                             00014140
      00 420 1=1.1M
                                                                             00014150
      SUM=SUM+WORK2(J+1)
                                                                             00014160
      CLAT-ABS(COS(LAT(J)))
                                                                             00014170
      ZM(J)=SUM/FIM
                                                                             00014180
      WTM=WTM+CLAT
                                                                             00014190
 430
      ZMM=ZMM+ZM(J)+CLAT
                                                                             00014200
      ZMM=ZMM/WTM
                                                                             00014210
      SPOL=2M(1)
                                                                             00014220
      NPOL=ZM(JM)
                                                                             00014230
C
                                                                             00014240
      DATA NAMEL / MAP WIND DIRECTION
                                                                          1/ 00014250
      DATA NL/13/
                                                                             00014260
      RETURN
                                                                             00014270
C
                                                                             00014280
                                                                             00014290
      END
                                                                             00014300
```

```
SUBROUTI
      // OD OISP=DLO.DSN=MES727.ABN.COMMON
                                                                                                                                                                                                                              00014310
                                                                                                                                                                                                                             00014320
                        00 •
                                                                                                                                                                                                                              00014330
                        COMMON /COUT/ ZM(46).SURF.LFV.ISL.NAME(13)
LOGICAL LEV. STAGJ. STAGI. ISL
                                                                                                                                                                                                                             00014340
                                                                                                                                                                                                                             00014350
                        OIMENSION NAMEL(13)
                                                                                                                                                                                                                             00014360
                        LOGICAL LHLF
                                                                                                                                                                                                                             00014370
     C
                                                                                                                                                                                                                            00014380
                       LONG WAVE COOLING. MAP TYPE 19
                                                                                                                                                                                                                            00014390
     C
                                                                                                                                                                                                                            00014400
                       FIM=1M
                                                                                                                                                                                                                            00014410
                       STAGJ=. FALSE.
                                                                                                                                                                                                                            00014420
                       STAGI = . FALSE .
                                                                                                                                                                                                                            00014430
     C
                                                                                                                                                                                                                            00014440
                                                                                                                                                                                                                            00014450
                      LHLF= SURF .LT. .5
                                                                                                                                                                                                                           00014460
                       00 110 1=1.NL
                                                                                                                                                                                                                            00014470
       110
                      NAME(1)=NAMEL(1)
                                                                                                                                                                                                                           00014480
                      DO 118 J±1+JM
                                                                                                                                                                                                                           00014490
       118
                      ZM(J)=0.0
                                                                                                                                                                                                                          00014500
                                                                                                                                                                                                                           00014510
                      On 150 1=1.1M
                                                                                                                                                                                                                          00014520
                     DO 150 J=1.JM
                                                                                                                                                                                                                          00014530
                      IF (LHLF) GO TO 125
                                                                                                                                                                                                                          00014540
                     ACC=1RH(VT(J+1+2))
                                                                                                                                                                                                                          00014550
                     ACC *ACC/100.
                                                                                                                                                                                                                          00014560
                    GO TO 140
                                                                                                                                                                                                                          00014570
      125 ACC=1LH(VT(J+1+2))
                                                                                                                                                                                                                         00014580
                    ACC=ACC/100.
                                                                                                                                                                                                                          00014590
     140
                    ZM(J)=ZM(J)+ACC
                                                                                                                                                                                                                          00014600
     150
                    WORK 2(J.1) = ACC
                                                                                                                                                                                                                          00014610
                                                                                                                                                                                                                         00014620
                    ZMM=O.
                                                                                                                                                                                                                         00014630
                    0.0 MTH
                                                                                                                                                                                                                        00014640
                    ON 158 J=1.JM
                                                                                                                                                                                                                         00014650
                    HTM=HTM + ARS(DXYP(J);
                                                                                                                                                                                                                        00014660
                    ZM(J)=ZM(J)/FIM
                                                                                                                                                                                                                        00014670
                 CEPTY CONTRACTOR CONTR
                                                                                                                                                                                                                        00014680
                   ZMM=ZMM/WTM
                                                                                                                                                                                                                        00014690
                   SPOL=7M(1)
                                                                                                                                                                                                                       00014700
                   NPOL=7M(JM)
                                                                                                                                                                                                                        00014710
C
                                                                                                                                                                                                                       00014720
                  DATA NAMEL/ LING WAVE HEATING IN LAYERS (DEG CENT/DAY)
                                                                                                                                                                                                                       00014730
                  DATA NE/13/
                                                                                                                                                                                                              1/ 00014740
                  RETURN
                                                                                                                                                                                                                       00014750
C
                                                                                                                                                                                                                       00014760
                  END
                                                                                                                                                                                                                       00014770
                                                                                                                                                                                                                      00014780
```

	S U B R O U T I N E	00014790
	MAP20	00014800
	OISP=OLD.OSN=MES727.ABN.COMMON	00014810
11	00 •	00014820
	COMMON /COUT/ ZM(46), SURF, LEV, TSL, NAME(13)	00014830
C	ABSORBTION OF INSOLATION. MAP TYPE 20	00014840
	LOGICAL LEV. STAGJ, STAGI, ISL	00014850
	DIMENSION NAMEL(13)	00014860
	LOGICAL LHLF	00014870
C		00014880
	FIM=IM	00014890
	STAGJ=.FALSF.	00014900
	STAG1=.FALSE.	00014910
C		00014920
	LHLF= SURF .GT5	00014930
C		00014940
	DO 110 1=1.NL	00014950
110	NAME(I)=NAMEL(I)	00014960
C		00014970
	00 118 J=1.JM	00014980
118	ZM(J)=0.	00014990
C		00015000
	DD 150 1=1.IM	00015010
	DO 150 J=1,JM	00015020
	IF (LHLF) GO TO 125	00015030
	ACC=ILH(TT(J.1.1))	00015040
	ACC=ACC/100.	00015050
	60 TO 140	00015060
125	ACC=IRH(TT(J,1,1))	00015070
	ACC=ACC/100.	00015080
140	ZM(J)=ZM(J)+ACC	00015090
150	WORK2(J.1)=ACC	00015100
C		00015110
	Z MM=0.0	00015120
	WTM=0.0	00015130
	00 158 J=1,JM	00015140
	HTM=HTM + ABS(DXYP(J))	00015150
	2M(J)=2M(J)/FIM	00015160
158	ZMM=ZMM+ZM(J) +ABS(DXYP(J))	00015170
	ZMM=ZMM/WTM	00015170
	SPOL=ZM(1)	00015190
	NPOL=ZM(JM)	00015200
C		
_	DATA NAMEL/ ABSORPTION OF INSOLATION IN LAYERS (DEG CENT/DAY)	00015210
	DATA NL/13/	
	RETURN	00015230
C		00015240
•	ENO	00015250
		00015260

```
SUBROU
 // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00015270
                                                                              00015280
                                                                              00015290
 11
       00 .
                                                                              00015300
       LOGICAL LEV. STAGJ. STAGI. ISL
COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
                                                                              00015310
                                                                              00015320
       EQUIVALENCE (SURF.SIGL)
                                                                              00015330
       DIMENSION NAMEL(13)
                                                                              00015340
 C
                                                                              00015350
 C
       WIND SPEED, MAP TYPE 21
                                                                              00015360
 C
                                                                              00015370
       IMM2=1M-2
                                                                              00015380
       I-ML=IMML
                                                                              00015390
 C
                                                                              00015400
 C
                                                                              00015410
       DO 110 I=1.NL
                                                                             00015420
  110
       NAME(I)=NAMEL(I)
                                                                              00015430
 C
                                                                              00015440
       STAGJ=. TRUE.
                                                                              00015450
       STAGI = . TRUE .
                                                                             00015460
C
                                                                             00015470
       DO 330 1=1.1M
                                                                             00015480
       DO 330 J=2.JM
                                                                             00015490
       WIND=WORK2(J+1)++2+WORK1(J+1)++2
                                                                             00015500
 330
       WORK2(J.I)=SQRT(WIND)
                                                                             00015510
C
                                                                             00015520
       FIMEIM
                                                                             00015530
       ZMM=0.0
                                                                             00015540
       WIM=0.0
                                                                             00015550
       00 430 J+2.JM
                                                                             00015560
       SUM=0.0
                                                                             00015570
      DO 420 1=1.1M
                                                                             00015580
 420 SUM=SUM+WORK21J.11
                                                                             00015590
      CLAT=ABSICOS(.5+(LAT(J-1)+LAT(J))))
                                                                             00015600
       ZM(J)=SUM/FIM
                                                                             00015610
      WTM=WTM+CLAT
                                                                             00015620
      ZMM=ZMM+ZM(J)+CLAT
 430
                                                                             00015630
      MTW/MMS=MMS
                                                                             00015640
      SPOL=ZHIZI
                                                                             00015650
      NPOL=ZM(JM)
                                                                             00015660
C
                                                                             00015670
      DATA NAMEL/ MAGNITUDE OF THE VECTOR WIND (M/SEC)
                                                                         1/ 00015680
      DATA NL/13/
                                                                            00015690
      RETURN
                                                                            00015700
C
                                                                            00015710
      END
                                                                            00015720
```

```
UBROUTI
               MAP22
                                                                            00015730
  // OO DISP=OLD.DSN=MES727.AUN.COMMON
                                                                            00015740
       DO .
                                                                            00015750
        CDMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
                                                                            00015760
        LOGICAL LEV. STAGJ. STAGI. ISL
                                                                           00015770
        DIMENSION NAMEL(13)
                                                                            00015780
  C
                                                                           00015790
 C .
        SURFACE INSOLATION MAP TYPE 22
                                                                           00015800
                                                                           00015810
        FIM=IM
                                                                           00015820
        STAGJ=.FALSE.
                                                                           00015830
        STAGI = . FALSE.
                                                                           00015840
 C
                                                                           00015850
       DO 110 I=1.NL
                                                                           00015860
  110
       NAME(1)=NAMEL(1)
                                                                           00015870
                                                                           00015880
       DO 150 J=1.JM
c 150
                                                                           00015890
       ZM(J)=0.0
                                                                           00015900
                                                                           00015910
       00 275 I=1.IM
                                                                           00015920
       DO 275 J=1,JM
                                                                          00015930
       ACC=ILH(SD(J.I))
                                                                          00015940
       ACC=ACC/10.
                                                                          00015950
275
C
       ZM(J)=ZM(J)+ACC
                                                                          00015960
      WORK2(J+1)=ACC
                                                                          00015970
                                                                          00015980
      ZMM=0.0
                                                                          00015990
      WTM=0.0
                                                                          00016000
      DO 158 J=1.JM
                                                                          00016010
      WTM=WTM + ARS(DXYP(J))
                                                                          00016020
      ZM(J)=ZM(J)/FIM
                                                                          00016030
 158 ZMM=ZMM+ZM(J)+ABS(DXYP(J))
                                                                          00016040
       ZMM=ZMM/WTM
                                                                          00016050
      SPOL=ZM(1)
                                                                          00016060
      NPOL=ZM(JM)
                                                                          00016070
C
                                                                          00016080
      DATA NAMEL/*SURFACE INSOLATION ABSDRPTION (100 CAL/CM**2/DAY)
                                                                          00016090
                                                                      1/ 00016100
      RETURN
                                                                          00016110
C
                                                                          00016120
      END
                                                                         00016130
                                                                         00016140
```

```
S U B R O U T 1 N E
                                                                              00016150
 // UD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00016160
      DD *
                                                                              00016170
       LOGICAL LEV, STAGJ, STAGI, 1SL
COMMON /COUT/ ZM(46), SURF, LEV, 1SL, NAME(13)
                                                                              00016180
                                                                              00016190
        EQUIVALENCE (SURF.SIGL)
                                                                              00016200
                                                                              00016210
        DIMENSION NAMEL (13)
 С
        SURFACE AIR TEMPERATURE, MAP TYPE 23
                                                                              00016220
 С
                                                                              00016230
       FIM=IM
                                                                             00016240
        STAGJ=.FALSE.
                                                                              00016250
        STAGI=.FALSE.
                                                                             00016260
 С
                                                                             00016270
       UO 110 1=1,NL
                                                                             00016280
  110
       NAME(I)=NAMEL(I)
                                                                             00016290
 C
                                                                             00016300
       DO 220 I=1,1M
                                                                             00016310
       DO 220 J=1,JM
                                                                             00016320
       TT4=1LH(Q3T(J,1))
                                                                             00016330
       WORK2(J.1)=TT4/10. - T1CE
 220
                                                                             00016340
С
                                                                             00016350
  410
       Z MM=0.0
                                                                             00016360
       WTM=0.0
                                                                             00016370
       D() 430 J=1,JM
                                                                             00016380
       SUM=0.0
                                                                             00016390
       DO 420 I=1.1M
                                                                             00016400
 420 SUM=SUM+WORK2(J.1)
                                                                             00016410
       CLAT=ABS(DXYP(J))
                                                                             00016420
      ZM(J)=SUM/FIM
                                                                             00016430
      WTM=WTM+CLAT
                                                                             00016440
 430
      ZMM=ZMM+ZM(J)*CLAT
                                                                             00016450
      ZMM=ZMM/WTM
                                                                            00016460
                                                                            00016470
      NPOL=ZM(JM)
      SPOL=ZM(1)
                                                                            00016480
С
                                                                            00016490
      DATA TICE/273.1/
                                                                            00016500
      DATA NAMEL/ SURFACE AIR TEMPERATURE (DEG CENT)
                                                                            00016510
                                                                         1/ 00016520
      DATA NL/13/
C
                                                                            00016530
      RETURN
                                                                            00016540
      END
                                                                            00016550
                                                                            00016560
```

```
SUBROUTINE
                                                                         00016570
            MAP24
                                                                         00016580
// DO DISP=OLO,OSN=MES727.ABN.COMMON
                                                                         00016590
   DD *
                                                                         00016600
      COMMON /COUT/ ZM(46), SURF, LEV, ISL, NAME(13)
                                                                         00016610
      LOGICAL LEV. STAGJ. STAGI. ISL
                                                                         00016620
      OIMENSION NAMEL(13)
                                                                         00016630
                                                                         00016640
      GROUNO TEMPERATURE (OEG CENTIGRAGE) MAP TYPE 24
C
                                                                         00016650
C
                                                                         00016660
      FIM=IM
                                                                         00016670
      STAGJ=.FALSE.
                                                                         00016680
      STAGI = . FALSE .
                                                                         00016690
C
                                                                         00016700
      DO 110 I=1.NL
                                                                         00016710
     NAME(I)=NAMEL(I)
110
                                                                         00016720
C
                                                                         00016730
      00 150 J=1,JM
                                                                         00016740
150
     ZM(J)=0.0
                                                                         00016750
C
                                                                         00016760
      00 275 I=1, IM
                                                                         00016770
      00 275 J=1,JM
                                                                         00016780
      ACC = GT(J,I) - TICE
                                                                         00016790
      ZM(J)=ZM(J)+ACC
                                                                         00016800
275
     WORK2(J+1)=ACC-.0001
                                                                         00016810
                                                                         00016820
      ZMM=0.0
                                                                         00016830
      WTM=0.0
                                                                         00016840
      DO 158 J=1.JM
                                                                         00016850
      WTM=WTM + ABS(DXYP(J))
                                                                         00016860
      ZM(J) = ZM(J) / FIM
                                                                         00016870
158 ZMM=ZMM+ZM(J) *ABS(DXYP(J))
                                                                         00016880
       ZMM=ZMM/WTM
                                                                         00016890
      SPOL=ZM(1)
                                                                         00016900
     NPOL=ZM(JM)
                                                                         00016910
C
                                                                         00016920
      DATA TICE /273.1/
                                                                         00016930
      DATA NAMEL/ GROUND TEMPERATURE (DEG CENT)
                                                                      1/ 00016940
      DATA NL/13/
                                                                         00016950
C
                                                                         00016960
      RETURN
                                                                         00016970
      ENO
                                                                         00016980
```

```
SUBROUTINE
                      MAP25
                                                                              00016990
  // DD DISP=OLD.DSN=MES727.ABN.COMMON
                                                                              00017000
  11
       DD .
                                                                              00017010
        COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
LOGICAL LEV. STAGJ. STAGI. ISL
                                                                              00017020
                                                                              00017030
        DIMENSION NAMEL(13)
                                                                              00017040
  C
                                                                              00017050
        WETNES. MAP TYPE 25
                                                                              00017060
  Č
                                                                              00017070
        FIM=IM
                                                                             00017080
        IMM2=1M-2
                                                                              00017090
        JMM1=JM-1
                                                                             00017100
        STAGJ=.FALSE.
                                                                             00017110
        STAGI = . FALSE .
                                                                             00017120
 C
                                                                             00017130
       DO 110 I=1.NL
                                                                             00017140
  110
       NAME(1)=NAMEL(1)
                                                                             00017150
                                                                             00017160
       ZMM=0.0
                                                                             00017170
       DO 118 J=1.JM
                                                                             00017180
  118
       ZM(J)=0.0
                                                                             00017190
                                                                             00017200
       DO 128 I=1.IM
                                                                             00017210
       DO 128 J=1.JM
                                                                            00017220
       ACC=GW(J.1)+10.
                                                                            00017230
       ZM(J)=ZM(J)+ACC
                                                                            00017240
 128
       WORK2(J+1)=ACC
                                                                            00017250
                                                                            00017260
       WTM=0.0
                                                                            00017270
       DO 158 J=1.JM
                                                                            00017280
      WTM=WTM + ABS(DXYP(J))
                                                                            00017290
      ZM(J)=ZM(J)/FIM
                                                                            00017300
      ZMM=ZMM+ZM(J)+ABS(DXYP(J))
                                                                            00017310
      ZMM=ZMM/WTM
                                                                            00017320
      SPOL=ZM(1)
                                                                            00017330
      NPOL=ZM(JM)
                                                                            00017340
      DATA NAMEL/ GROUND WETNESS (SCALED ZERO TO TEN)
                                                                            00017350
      DATA NL/13/
                                                                         1/ 00017360
C
                                                                            00017370
      RETURN
                                                                            00017380
C
                                                                            00017390
      END
                                                                            00017400
                                                                           00017410
```

```
S U B R D U T 1 N E
                                                                            00017420
# MAP26
// OD DISP=DLD.DSN=MES727.ARN.COMMON
                                                                            00017430
                                                                            00017440
     00 *
                                                                            00017450
       COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAMF(13)
                                                                            00017460
       LOGICAL LEV. STAGJ. STAGI. ISL
                                                                            00017470
       COMMON /EXCOM/CC(46,72,4),CPC1(46,72),CPC3(46,72),
                                                                            00017480
                     PRCLH(46,72), SR4(46,72)
                                                                            00017490
      DIMENSION NAMEL(13), NAME2(13), NAME3(13)
                                                                            00017500
C
                                                                            00017510
C
                                                                            00017520
      FIM=IM
                                                                            00017530
       STAGJ=.FALSF.
                                                                            00017540
       STAGI . FALSE .
                                                                            00017550
C
                                                                            00017560
      K=1
                                                                            00017570
       IF (SURF.GT.0.5) K=2
                                                                           00017580
       1F (SURF. EQ. 1.0) K=3
                                                                            00017590
      IF (SURF.GT.1.0) K=4
                                                                           00017595
      DO 110 1=1.NL
                                                                           00017600
      NAME(I)=NAME1(I)
                                                                           00017610
       IF (K.EQ.2) NAME(I)=NAME2(I)
                                                                           00017620
       IF (K.EQ.4) NAME(I)=NAME4(1)
                                                                           00017625
  110 IF (K.EQ.3) NAME(1)=NAME3(1)
                                                                           00017630
C
                                                                           00017640
      OR 150 J=1.JM
                                                                           00017690
      ZM(J)=0.0
 150
                                                                           00017660
                                                                           00017670
      DO 275 I=1.1M
                                                                           00017680
      00 275 J=1.JM
                                                                           00017690
      ACC=CC(J.1.K)
                                                                           00017700
      IF (ACC.LT.O.O) ACC=0.0
                                                                           00017705
      ZM(J)=ZM(J)+ACC
                                                                           00017710
      WORK2(J.I)=ACC
                                                                           00017720
 275
C
                                                                           00017730
      ZMM=0.0
                                                                           00017740
      WTM=0.0
                                                                           00017750
      00 158 J=T,JM
                                                                           00017760
      WTM=WTM + AHS(DXYP(J))
                                                                           00017770
      7M(J)=ZM(J)/FIM
                                                                           00017780
 15R ZMM=ZMM+ZM(J)+AB3(AXYP(J))
                                                                           00017790
       ZMM=ZMM/WTM
                                                                           00017800
      SPOL=ZM(1)
                                                                           00017810
      NPOL=ZM(JM)
                                                                           00017820
C
                                                                           00017830
      DATA NAMEL/ HIGH CLOUDINESS
                                                                        1/ 00017840
      OATA NAMEZ/ MIDDLE CLOUDINESS
                                                                        1/ 00017850
      DATA NAME3/ LOW CLOUDINESS
                                                                        1/ 00017860
      DATA NAME4/ CLOUDINESS
                                                                        1/ 00017865
      DATA NL/13/
                                                                           00017870
      RETURN
                                                                           00017880
C
                                                                           00017890
      FND
                                                                           00017900
```

	S D B R D U T 1 N F	00017910
	* MAP27	00017920
// 00	DISP=DLD.DSN=MES727.AKN.COMMON	00017930
11	DD +	00017940
	COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAMF(13)	00017950
	LOGICAL LEV. STAGJ. STAGI. ISL	00017960
	FOI)TVALENCE (STGL+SHRF)	00017970
	DIMENSION NAMEL(13)	00017980
C		00017990
	FIM=IM	00018000
C		00018010
	STAGJ=.FALSF.	00018020
	STAGI - FALSE.	00018030
C		00018040
	DO 110 1=1.NL	00018050
110	NAME(1)=NAMFL(1)	00018060
C		00018070
	DO 220 J=1.JM	02018080
	DO 220 1=1.1M	00018090
220	WORK2(J.1)=PTROP+SURF+P(J.1)	00018100
С		00018110
	00 118 J=1.JM	00018120
118	7M(J)=0.0	00018130
C		00018140
	2 MM*0.0	00018150
	WTM=0.0	00018160
	00 430 J=1.JM	00018170
	SUM=0.0	00018180
	CLAT = AHS(DXYP(J))	00018190
	100 420 1=1.1M	00018200
420	SUM=SUM+WORK2(J+1)	00018210
	ZM(J)=SUM/FIM	00018220
	WTM=WTM+CLAT	00018230
430	ZMM=ZMM+ZM(J)+CLAT	00018240
	Z MM=Z MM/WT M	00018250
	SPOL=ZM(1)	00018260
	NPOL=ZM(JM)	00018270
C		00018280
	DATA NAMEL/ PRESSURE AT SIGMA SURFACE	1/ 00018290
	DATA NL/13/	00018300
	RETURN	00018310
C		00018320
	END	00018330

```
UHRNUIINE
                                                                                00018340
           MAPZR
                                                                                00018350
 // DD DISP=OLD.DSN=MES727.AHN.COMMON
                                                                                00018360
 11
        (1)(1)
                                                                                00018370
       COMMON /COUT/ ZM(461.SURF.LEV.ISL.NAMF(13)
LOGICAL LEV. STAGJ. STAGI. ISL
FOULVALENCE (SIGL.SURF!
                                                                                00018380
                                                                                00018390
                                                                                00018400
       COMMON /EXCOM/CC(46.72.41.CPC1(46.721.CPC3(46.72).
PRCLH(46.72).SR4(46.72)
                                                                                00018410
                                                                                00018420
        DIMENSION NAMEL(131
                                                                                00018430
 C
                                                                                00018440
       FIM=1M
                                                                                00018450
 C
                                                                                00618460
       STAGJ=.FALSF.
                                                                                00018470
        STAG1 = . FALSF .
                                                                                00018480
       L1=1
                                                                               00018490
       12=2
                                                                                00018500
       SIGLI=SIG(LI)
                                                                                00018510
        SIGL2=SIG(L21
                                                                                00018520
       OS16=1./(SIGL2-SIGL1)
                                                                               00018530
       SURFMT + SURF-PTROP
                                                                               00018540
       IF (LEV) SIGX=SIGL
                                                                               00018550 .
 C
                                                                               00018560
       00 110 1=1.NL
                                                                               00018570
       NAME(11=NAMFL(11
  110
                                                                               00018580
C
                                                                               00018590
       DD 220 1=1.IM
                                                                               00018600
       DO 220 J=1.JM
                                                                               00018610
       1F (.NOT.LEVI SIGX=SURFMT/P(J.II
                                                                               00018620
       H1=CPC1(J.1)
                                                                               00018630
       H3=CPC3(J.1)
                                                                               00018640
      WORK2(J.11=051G+((51GL2-51GX)+H] + (51GX-51GL11+H3)
 220
                                                                               00018650
C
                                                                               00018660
       00 118 J=1.JM
                                                                               00018670
 118
       0.0=(L)MS
                                                                               00018680
C
                                                                               00018690
       7 MM=0.0
                                                                               00018700
       O.O=MTW
                                                                               00018710
       DO 430 J=1.JM
                                                                               00018720
       SUM=0.0
                                                                               00018730
       CLAT=ABS(DXYP(J))
                                                                               00018740
       DO 420 1=1.1M
                                                                               00018750
 420 SUM=SUM+WORK2(J.II
                                                                               00018760
       ZM(J)=SUM/FIM
                                                                               00018770
      WTM=WTM+CLAT
                                                                               00018780
 430
     7 MM=2MM+ZM(J)+CLAT
                                                                               00018790
      7 MM=ZMM/WTM
                                                                               00018800
       SPDL=ZM(1)
                                                                               00018810
      NPOL = ZM(JM)
                                                                               00018820
C
                                                                               00018830
      DATA NAMEL/ TOTAL CONVECTIVE HEATING (DEG CENT/DAY)
                                                                            1/ 00018840
      DATA NL/13/
                                                                               00018850
      RETURN
                                                                               00018860
C
                                                                              00018870
      END
                                                                              00018880
```

```
00018890
            MAP29
  // DD DISP=OLD.DSN=MES727.AHN.COMMON
                                                                             00018900
                                                                             00018910
        00 +
        COMMON /COUT/ ZMC461.SURF.LEV.ISL.NAMF(131
                                                                             00018920
                                                                             00018930
        LOGICAL LEV. STAGJ. STAGI. 15L
                                                                             00018940
        FOUTVALENCE (SIGL.SURF)
        COMMON /EXCOM/CC146.72.41.CPC1146.721.CPC3146.721.
                                                                             00018950
                                                                             00018960
                      PRCLH(46,72), SR4(46,721
        SIMENSION NAMEL (13)
                                                                             00018970
  C
                                                                             00018980
        FIMEEM
                                                                             00018990
  C
                                                                             00019000
                                                                             00019010
        STAGJ .. FALSE.
                                                                             00019020
        STAGI .. FALSF.
                                                                             00019030
        11-1
                                                                             00019040
        T5=5
        SIGLI=SIG(LI)
                                                                             00019050
                                                                             00019060
        SIGL? #SIGIL?
        D$16=1./($16L2-$16L1)
                                                                            00019070
                                                                            00019080
        SUMFMT=SURF-PTROP
                                                                            00019090
        IF (LFV) SIGX#SIGL
 C
                                                                            00019100
                                                                            00019110
       DO 110 1=1.NL
  110
                                                                            00019120
       NAME(1)=NAMEL(1)
 C
                                                                            00019130
       OO 220 1=1.1M
                                                                            00019140
                                                                            00019150
       DO 220 J=1.JM
                                                                            00019160
       IF (.NOT.LEV) SIGX=SUREMT/P(J.1)
                                                                            00019170
       H1=0.0
       H3=PRCLH(J.1)
                                                                            00019180
       WORK2(J+1)#DS1G#((S1GL2-S1GX)#H1 + (S1GX-S1GL1)#H3)
                                                                            00019190
  550
 €,
                                                                            00019200
                                                                            00019210
       00 118 J=1.JM
                                                                            00019220
  118
       ZM(J)=0.0
C
                                                                            00019230
                                                                            00019240
       2 MM=0.0
       WTM=0.0
                                                                            00019250
                                                                            00019260
       DO 430 J=1,JM
       SUM=0.0
                                                                            00019270
                                                                           00019280
       CLAT=AHS(DXYP(J))
      DO 420 1=1.1M
                                                                           00019290
                                                                           00019300
      SUM=SUM+WORK2(J+1)
      ZM(J)=SUM/FIM
                                                                           00019310
                                                                           00019320
      WTM=WTM+CLAT
 430
      ZMM=ZMM+ZM(J)+CLAT
                                                                           20019330
                                                                           00019340
      ZMM=ZMM/WTM
      SPOL=ZM(1)
                                                                           00019350
                                                                           00019360
      NPIIL=ZM(JM)
C
                                                                           00019370
      DATA NAMEL/ LATENT HEATING IN LAYER LOFG CENT/DAY)
                                                                           00019380
                                                                        1/ 00019390
      DATA NL/13/
                                                                           00019400
      RETURN
C
                                                                           00019410
                                                                           00019420
      END
                                                                           00019430
```

```
S U H R O U T I N F
                                                                               00019440
                                                                               00019450
 // DO DISPEDLO. DSN=MES727. AHN. CHMMON
                                                                               00019460
 11
     00 +
                                                                               00019470
       COMMON /COUT/ ZM(46).SURF.LEV.ISL.NAME(13)
                                                                               00019480
       LOGICAL LEV. STAGJ. STAGI. ISL
COMMON /FXCOM/CC(46.72.4).CPC1(46.72).CPC3(46.72).
PRCLH(46.72).SR4(46.72)
                                                                               00019490
                                                                               00019500
                                                                               00019510
       DIMENSION NAMEL(13)
                                                                               00019520
 C
                                                                               00019530
 C
                                                                               00019540
       F[M=]M
                                                                               00019550
       STAGJ=. FALSE.
                                                                               00019560
       STAGI = . FALSE .
                                                                               00019570
C
                                                                               00019580
       00 110 1=1.NL
                                                                               00019590
  110 NAME(1)=NAMEL(1)
                                                                               00019600
C
                                                                               00019610
       00 150 J=1.JM
                                                                               00019620
 150 ZM(J)=0.0
                                                                               00019630
                                                                               00019640
       00 275 1=1.IM
                                                                               00019650
       DO 275 J=1.JM
                                                                               00019660
       ACC=.01+5R4(J.1)
                                                                               00019670
       ZM(J)=ZM(J1+ACC
                                                                               00019680
 275
      WIRK2 (J. 1) = ACC
                                                                              00019690
                                                                               00019700
       7 MM=0.0
                                                                              00019710
       O.O MINTW
                                                                              00019720
      00 158 J=1.JM
                                                                              00019730
      WTM=WTM + ARS(OXYP(J))
                                                                              00019740
      ZM(J)=ZM(J)/FIM
                                                                              00019750
 158 ZMM=ZMM+ZM(J)*ABS(OXYP(J))
                                                                              00019760
       7 MM=ZMM/WTM
                                                                              00019770
      SPOL=ZM(1)
                                                                              00019780
      NPOL=ZM(JM)
                                                                              00019790
C
                                                                              00019800
      DATA NAMEL/*SURFACE LONG-WAVE COOLING (100 CAL/CM+#2/DAY)
                                                                           1/ 00019810
      DATA NL/13/
                                                                              00019820
      RETURN
                                                                              00019830
C
                                                                              00019840
      FNO
                                                                              00019850
```

```
S II H R
                      OUTINE
                                                                            00019860
                                                                            00019870
 // DO DISPEDLO. USNEMES727. ABN. COMMON
                                                                            00019880
 11
      OD •
                                                                            00019890
       CHMMON /COUT/ ZM(46), SURF+LFV+ISL+NAME(13)
                                                                            00019900
       ENGICAL LEV. STAGJ. STAGI. ISL
                                                                            00019910
       COMMON /FXCOM/CL(46.72.4).CPC1(46.72).CPC3(46.72).
                                                                            00019920
                      PRCLH(46,72), SR4(46,72)
                                                                            00019930
       DIMENSION NAMEL(13)
                                                                            00019940
 C
                                                                            00019950
                                                                            00019960
       FIM= 1M
                                                                            00019970
       STAGJ=.FALSF.
                                                                           00019980
       STAGI . FALSE.
                                                                           00019990
                                                                           00020000
 C
                                                                           00020010
                                                                           00020020
       CALL MAP 27
                                                                           00020030
       On 275 I=1.1M
                                                                           00020040
       DO 275 J=1.JM
                                                                           00020050
   275 WORK1(J.I)=WORK2(J.I)
                                                                           00020060
       CALL MAP 30
                                                                           00020070
       OO 280 I=1.1M
                                                                           00020080
       DO 280 J=1.JM
                                                                           00020090
   2HO WORK1(J.1)=WORK1(J.1)-WORK2(J.1)
                                                                           00020100
       CALL MAP 15
                                                                           00020110
       00 285 I=1.IM
                                                                           00020120
       DO 285 J=1.JM
                                                                           00020130
  285 WORK1(J.1)=WORK1(J.1)-0.1*WORK2(J.1)
                                                                           00020140
       CALL MAP 14
                                                                           00020150
       On 290 I=1.1M
                                                                           00020160
       DO 290 J=1.JM
                                                                           00020170
  290 WORK2(J.1)=WORK1(J.()-0.580+WORK2(J.1)
                                                                           00020180
      00 150 J=1.JM
                                                                           00020190
      0.0=(L)MS
                                                                           00020200
      DO 300 1=1.1M
                                                                           00020210
      DO 300 J±1.JM
                                                                           00020220
  300 ZM(J)=ZM(J)+WNRK2(J+1)
                                                                           00020230
                                                                           00020240
      ZMM=O.O
                                                                          00020250
      O.O=MTW
                                                                           00020260
      ON 158 J=1.JM
                                                                           00020270
      WTM=WTM + ARS(DXYP(J))
                                                                          00020280
      ZM(J)=ZM(J)/F1M
                                                                          00020290
 158 ZMM=ZMM+ZM(J)+ABS(DXYP(J))
                                                                          00020300
       ZMM=ZMM/WTM
                                                                          00020310
      SPOL=ZM(1)
                                                                          00020320
      NPOL = ZM(JM)
                                                                          00020330
      DO 110 (=1.N)
                                                                          00020340
 110
      NAME(1)=NAMEL(1)
                                                                          00020350
                                                                          00020360
      DATA NAMEL/*SURFACE HEAT HALANCE (100 CAL/CM**2/DAY)
                                                                       1/ 00020370
      DATA NL/13/
                                                                          00020380
      RETURN
                                                                          00020390
C
                                                                          00020400
      FAIL
                                                                          00020410
```

```
UH
                           OUTINE
                                                                                  00020420
                          COMP3
                                                                                  00020430
  /*
                                                                                 00020440
 // OO OISP=OLO.DSN=MES727.ABN.COMMON
                                                                                 00020450
              00
                                                                                 00020460
        EQUIVALENCE (KKK.XXX)
                                                                                 00020470
        ENGICAL ICE. LAND. OCFAN. SNOW. KEY
COMMON /EXCOM/CC(46.72.4).CPC1(46.72).CPC3(46.72).
PRCLH(46.72).SR4(46.72)
                                                                                 00020480
                                                                                 00020490
                                                                                 00020500
 C
                                                                                 00020510
        TRANS(X)=1./(1.+1.75+X++.416)
                                                                                 00020520
        TRSW(X)=1.-.271*X**.303
                                                                                 00020530
 C
                                                                                 00020540
        JMM1=JM-1
                                                                                 00020550
        IMM2=IM-2
                                                                                 00020560
       JMM2=JM-2
                                                                                 00020570
        TH=[M/2+1
                                                                                 00020580
       FIM=IM
                                                                                 00020590
       $161 = $1G(1)
                                                                                 00020600
       $163=$16(2)
                                                                                 00020610
       DS16=S163-S161
                                                                                 00020620
 C
                                                                                 00020630
       GWM= 30.
                                                                                 00020640
       DTC3*FLOAT (NC3)*OT
                                                                                 00020650
       RCNV=DTC3/TCNV
                                                                                 00020660
       CLH=580./.24
                                                                                 00020670
       PloK=1000. **KAPA
                                                                                 00020680
       CT1=.005
                                                                                 00020690
       CTID=8.64E4+CT1
                                                                                 00020700
       HICE=300.
                                                                                00020710
       TICE=273.1
                                                                                 00020720
C
                                                                                 00020730
       PM=PSL-PTROP
                                                                                00020740
       CHE=GRAV+100./(0.5+PM+1000.+0.24)
                                                                                00020750
       COE1 = COF + DT C3/(24. + 3600.)
                                                                                00020760
       SCALFU=GDE+100.
                                                                                00020770
       TSPD=DAY/DTC3
                                                                                00020780
       SCALEP=TSPD+.5+(10./GRAV)+100.
                                                                                00020790
       CONRAD=180./PT
                                                                                00020800
       CNRX=CONRAO+.01
                                                                                00020810
       FSDEDY=SDFDY
                                                                                00020820
       SNOWN=(60.-15.*COS(.9863+(FSOFOY-24.668)/CONRAD))/CONRAD
                                                                                00020830
       SNOWS = -60 . / CONRAD
                                                                                00020840
CC
                                                                                00020850
       SURFACE WIND MAGNITUDE
                                                                                00020860
                                                                                00020870
      DO 10 T=1+TM
                                                                                00020880
      00 10 J=2.JM
                                                                                00020890
      US=2.*(STG3*U(J.1.2)-STG1*U(J.1.1))*0.7
                                                                                00020900
      YS=2.*(STG3+V(J.T.2)-STG1+V(J.T.1))*0.7
FD(J.T)=US+US + YS+VS
                                                                                00020910
                                                                                00020920
      WMAG1=SQRT(.5+(FD(2.1)+FD(2.1H)))
                                                                                00020930
      WMAGJM=SQRT(.5+(FO(JM.1)+FD(JM.TH)))
                                                                                00020940
```

```
00020950
C
     RADIATION CONSTANTS
                                                                            00020960
                                                                            00020970
       50=2880./RSDIST
                                                                            00020980
       ALC1 = . 7
                                                                            00020990
       ALC2=.6
                                                                            00021000
       ALC3=.6
                                                                            00021010
       STRN=1.171E-7
                                                                            00021020
       FFVC1=65.3
                                                                            00021030
       EFVC2=65.3
                                                                            00021040
       EFVC3=7.6
                                                                            00021050
      CPART=.5+1.3071E7
                                                                            00021060
      ROT = TOFDAY/ROTPER+2.0+P1
                                                                            00021070
C
                                                                            00021080
      HEATING LOOP
                                                                            00021090
                                                                            00021100
      DO 370 1=1.1M
                                                                            00021110
      IM1 = MOD(1+IMM2+IM)+1
                                                                            00021120
      IP1=MOD(I,IM)+1
                                                                            00021130
      FIM1=I-1
                                                                            00021140
      HACOS=COSD+COS(ROT+FIM1+DLON)
                                                                            00021150
      DO 360 J=1.JM
                                                                            00021160
      COSZ = SINL (J) + SIND+COSL (J) + HACOS
                                                                            00021170
C
                                                                            00021180
      SURFACE CONDITION
                                                                            00021190
                                                                            00021200
      TGOO=TOPOG(J.1)
                                                                            00021210
      ACEAN=TGOO.GT.1.
                                                                            00021220
      ICE=TG00.LE.-9.9F5
                                                                            00021230
      LAND=.NOT.(ICF.OR.OCFAN)
                                                                            00021240
      SNOW=LAND.AND.(LAT(J).GF.SNOWN.OR.LAT(J).LF.SNOWS)
                                                                           00021250
      LANO=LAND.AND..NDT.SNOW
                                                                           00021260
      IF (.NOT.OCFAN) ZZZ=VPH14(J.1)/GRAV
                                                                           00021270
      DRAG COFFFICIENT
C
                                                                           00021280
      IF (J .EQ. 1) WMAG=WMAG1
                                                                           00021290
      IF (J .FQ. JM) WMAG=WMAGJM
                                                                           00021300
      IF (J.NE.1.AND.J.NF.JM) WMAG=SQRT(.25*(FD(J.1)+FD(J+1.1)
                                                                           00021310
     X +FD(J,IM1)+FD(J+1,IM1)))
                                                                           00021320
      CD = .002
                                                                           00021330
      IF (.NOT.OCEAN) CD=C0+0.006#227/5000.
                                                                           00071340
      IF (OCFAN) CD = AMIN1((1.0+.07*WMAG)*.001..0025)
                                                                           00021350
      CS = CD*100.
                                                                           00021360
      CS4 = .24*CS*24.*3600.
                                                                           00021370
      FK1 = CD*(10.*GRAV)/(DSIG*PM)
                                                                           00021380
```

```
C
                                                                             00021390
 C
        PRESSURES
                                                                             00021400
 C
                                                                             00021410
       SP=P(J.1)
                                                                            00021420
       COLMR = PM/SP
                                                                            00021430
       P4=SP+PTRNP
                                                                            00021440
       P4K=P4**KAPA
                                                                            00021450
       PL1=SIG1*SP+PTROP
                                                                            00021460
       PL2=.5*SP+PTR()>
                                                                            00021470
       PL3=SIG3*SP+PTROP
                                                                            00021480
       PL1K=PL1++KL7A
                                                                            00021490
       PL3K=PL3+*KAPA
                                                                            00021500
       PL2K=PL2+*KAPA
                                                                            00021510
       PTRK=PTROP**KAPA
                                                                            00021520
       OPLK=PL3K-PL1K
                                                                            00021530
 C
                                                                            00021540
      TEMPERATURES AND TEST FOR DRY-ADIABATIC INSTABILITY
                                                                            00021550
 C
                                                                            00021560
       T1=T(J.1.1)
                                                                            00021570
       T3=T(J.1.2.
                                                                            00021580
       THL1=T1/PL1K
                                                                            00021590
       THL3=T3/PL3K
                                                                            00021600
       IF (THL1 .GT. THL3) GO TO 310
                                                                            00021610
       XX1=(T1+T3)/(PL1K+PL3K)
                                                                            00021620
       T1=XX1*PL1K
                                                                            00021630
       T3=XX1*PL3K
                                                                            00021640
       THL1=T1/PL1K
                                                                            00021650
       THL3=T3/PL3K
                                                                            00021660
C
                                                                           00021670
C
       MOISTURE VARIABLES
                                                                           00021680
                                                                           00021690
 310 FS1=10.0**(8.4051-2353.0/T1)
                                                                           00021700
      FS3=10.0**(A.4051-2353.0/T3)
                                                                           00021710
      P1CB=.1*PL1
                                                                           00021720
      P3CB=.1*PL3
                                                                           00021730
      P4CB=.1*P4
                                                                           00021740
      QS1=.622*ES1/(P1CB-ES1)
                                                                           00021750
      OS3=.622*ES3/(P3CB-ES3)
                                                                           00021760
      GAM1=CLH+QS1+5418./T1++2
                                                                           00021770
      GAM3=CLH#QS3#5418./T3##2
                                                                           00021780
      Q3R=03(J.I)
                                                                           00021790
      RH3=Q3R/053
                                                                           00021800
C
                                                                           01815000
C
      TEMPERATURE EXTRAPOLATION AND INTERPOLATION FOR RADIATION
                                                                           00021820
C
                                                                           00021830
      ATEM=(THL3-THL1)/DPLK
                                                                           00021840
      BTFM=(THL1*PL3K-THL3*PL1K)/DPLK
                                                                           00021850
      TTROP=(ATEM#PTRK+BTEM)*PTRK
                                                                           00021860
      T2=(ATEM#PL2K+BTFM)*PL2K
                                                                           00021870
```

```
C
  C
        GROUND TEMPERATURE AND WETNESS
                                                                            00021880
  C
                                                                            00021890
        TG=TGOO
                                                                            00021900
        WET=1.0
                                                                            00021910
        1F (.NOT.DCFAN) TG=GT(J.1)
                                                                            00021920
       IF (LAND) WET=GW(J.1)
                                                                            00021930
 C
                                                                            00021940
 C
     LARGE SCALE PRECIPITATION
                                                                            00021950
                                                                            00021960
       PREC=0.
                                                                            00021970
       1F (03R.LE.0S3) GO TO 1060
                                                                           00021980
       PREC=103R-0531/11.+GAM31
                                                                           00021990
       T3=T3+CLH+PRFC
                                                                           00022000
       THL 3= T3/PL3K
                                                                           01052000
       Q3R=Q3R-PREC
                                                                           00022020
 C
                                                                           00022030
 C
     CONVECTION
                                                                           00022040
                                                                           00022050
  1060 TETA1=THL1#P10K
                                                                           00022060
       TETA3=THL3*P10K
                                                                           00022070
       SS3 = TETA3*P4K/P10K
                                                                           00022080
      SS2 = SS3 + 0.5*(TFTA1-TFTA3)*PL2K/P10K
                                                                           00022090
      SS1 = SS2 + 0.5*(TETA1-TETA3)*PL2K/P10K
                                                                           00022100
      HH3 = SS3 + CLH*D3R
                                                                           00022110
      HH3S = SS3 + CLH#QS3
                                                                           00022120
      HH1S = SS1 + CLH+QS1
                                                                           00022130
                                                                           00022140
C
    MIDDLE LEVEL CONVECTION
                                                                           00022150
                                                                           00022160
      C1 = 0.
                                                                           00022170
      C3 = 0.
                                                                          00022180
      EX = HH3 - HH15
                                                                          00022190
      1F (EX.LE.O.) GO TO 1065
                                                                          00022200
      C1 = RCNV*EX/{2*+GAM1}
                                                                          00022210
      C3 = C1*(1.+GAM1)*(SS2-SS3)/(FX+(1.+GAM1)*(SS1-SS2))
                                                                          00022220
C
                                                                          00022230
    PREPARATION FOR AIR-FARTH INTERACTION
C
                                                                          00022240
                                                                          00022250
 1065 ZL3 = 2000.
                                                                          00022260
     WINDE=2.0+WMAG
                                                                          00022270
      DRAW=CD+WINDE
                                                                          00022280
      EDV=ED/7L3+WMAG/10.
                                                                          00022290
                                                                          00022300
```

```
C
                                                                              00022310
 C
     DETERMINATION OF SURFACE TEMPERATURE
                                                                              00022320
 C
                                                                              00022330
 C
                                                                              00022340
  1070 RH4=2.*WET*RH3/(WET+RH3)
                                                                              00022350
       EG=10.**(8.4051-2353./TG)
                                                                              00022360
       EG= AMIN1 (EG. P4CB/1.662)
                                                                              00022370
       QG=.622*EG/(P4CB-FG)
                                                                              00022380
       DQG=5418.*QG/TG**2
                                                                              00022390
       HHG=TG+CLH+QG+WET
                                                                              00022400
       EDR = EDV/(EDV+DRAW)
                                                                              00022410
       HH4=EDR +HH3+(1.-EOR) +HHG
                                                                              00022420
       GAMG=CLH+0QG
                                                                             00022430
       T4=(HH4-RH4*(CLH+QG-GAMG+TG))/(1.+RH4+GAMG)
                                                                             00022440
       IF (T4+PloK/P4K.GT.TETA3) T4=TFTA3+P4K/PloK
                                                                             00022450
       Q4=RH4+(QG+DQG+(T4-TG))
                                                                             00022460
       HH4=T4+CLH+04
                                                                             00022470
                                                                             00022480
C
    PENETRATING AND LOW-LEVEL CONVECTION
                                                                             00022490
C
                                                                             00022500
      PC1=0.
                                                                             00022510
      PC3=0.
                                                                             00022520
      EX=0.
                                                                             00022530
      IF (HH4 .LE. HH3S) GO TO 1077
IF (HH3 .GT. HH1S) GO TO 1077
                                                                             00022540
                                                                             00022550
      EX = HH4-HH3S
                                                                             00022560
      HH4P = HH4
                                                                             00022570
      HH4 = HH3S
                                                                             00022580
      IF (HH4P .LT. HH1S) GO TO 1076
                                                                             00022590
      ETA = 1.
                                                                             00022600
      TEMP1 = ETA*((HH3S-HH1S)/(1.+GAM1)+SS1-SS2)
                                                                             00022610
      TEMP2 = ETA*(SS2-SS3) + (SS3-T4)
                                                                             00022620
      TEMP = EDR * TEMP1+(1.+GAM3) * TEMP2
                                                                             00022630
      IF (TEMP .LT. .001) TEMP=.001
                                                                             00022640
      CONVP = RCNV*EX/TEMP
                                                                             00022650
      PC1 = CONVP*TFMP1
                                                                             00022660
      PC3 = CONVP * TEMP2
                                                                             00022670
C
                                                                             00022680
 1076 T4=T4-EX/(1.+RH4*GAMG)
                                                                             00022690
      Q4=(HH4-T4)/CLH
                                                                             00022700
                                                                             00022710
 1077 RO4=P4CB/(RGAS*T4)
                                                                             00022720
      CSESI=CS4*RO4*WINOF
                                                                             00022730
      CEVA=CS*RO4*WINOF
                                                                            00022740
```

```
C
                                                                      00022750
    CLOUDINESS
                                                                      00022760
                                                                      00022770
      ICLOUD=1
                                                                      00022780
      CL=0.
                                                                      00022790
      CL1=0.
                                                                      00022800
      CL2=0.
                                                                      00022810
      CL3=0.
                                                                      00022820
      CLT=0.
                                                                      00022830
      CL=AMIN1(-1.3+2.6*RH3.1.)
                                                                      00022840
      IF (C1.GT.O..OR.PC1.GT.O.) CL1=CL
                                                                      00022850
      IE (PREC.GT.O..AND.CL1.EQ.O.) CL2=1.
                                                                      00022860
      IE (EX.GT.O..AND.PC1.EQ.O.) CL3=CL
                                                                      00022870
         00022880
00000
                                                                      00022890
                                                                      00022900
                                                                      00022910
                                                                      00022920
C
                                                                      00022930
C
                                                                      00022940
C
                                                                      00022950
Č
                                                                      00022960
C
                                                                      00022970
C
                                                                      00022980
C
                                                                      00022990
C
                                                                      00023000
C
                                                                      00023010
C
                          CL 2
                                        CL3
                                                                      00023020
С
                                                                      00023030
C
                                                                      00023040
      CL=AMAX1(CL1,CL2,CL3)
                                                                      00023050
      IF (CL .GE. 1.) ICLOUD=3
                                                                      00023060
      IF (CL .LT. 1. .AND. CL .GT. O.) ICLOUD=2
                                                                      00023070
                                                                      00023080
С
      ICLOUD=1 CLFAR, ICLOUD=2 PARTLY CLOUDY, ICLOUD=3 OVERCAST
                                                                      00023090
      LONG WAVE RADIATION
                                                                      00023100
                                                                      00023110
 1080 Q3RB=AMAX1(Q3R+1.E-5)
                                                                      00023120
      VAK=2.+ALOG(1.7188E-6/Q3RB)/ALOG(120./PL3)
                                                                      00023130
      TEM1 = . 00102 + PL 3 + + 2 + Q3RB / VAK
                                                                      00023140
      TEM2=TEM1+(P4/PL3)+*VAK
                                                                      00023150
     EFV3=TEM2-TEM1
                                                                      00023160
      EEV2=TEM2-TEM1+(PL2/PL3)++VAK
                                                                     00023170
      FFV1=TEM2-TEM1+(PL1/PL3)++VAK
                                                                     00023180
      EFVT=TEM2-TFM1+(PTROP/PL3)++VAK
                                                                     00023190
     EFV0=TEM2-TEM1+(120./PL3)++VA4+2.526E-5
                                                                     00023200
     BLT=STBO*TTROP**4
                                                                     00023210
     BL1=STBO*T1**4
                                                                     00023220
     BL2=STBD*T2**4
                                                                     00023230
     BL3=STB()*T3**4
                                                                     00023240
     BL4=STBO*TG**4
                                                                     00023250
```

```
C
       LONG WAVE RADIATION
                                                                           00023260
       ROC=O.
                                                                           00023270
       R2C=0.
                                                                           00023280
       R4C=0.
                                                                           00023290
       URT=BLT*TRANS(EFVO-FFVT)
                                                                           00023300
       UR2=BL2*TRANS(EFVO-EFV2)
                                                                           00023310
       GO TO (1090,1090,2000), ICLOUD
                                                                           00023320
  1090 R00=0.82*(URT+(BL4-BLT)*(1.+TRANS(EFVT))/2.)
                                                                           00023330
       R20=0.736*(UR2+(BL4-BL2)*(1.+TRANS(EFV2))/2.)
                                                                           00023340
       R40=BL4*(0.6*SQRT(TRANS(EFV0))-0.1)
                                                                           00023350
       IF (ICLOUD .FQ. 1) GO TO 2015
                                                                           00023360
 2000 IF (CL2 .LE. 0.) GO TO 2004
                                                                           00023370
      CLT=CL2
                                                                           00623380
      ROC=0.82*(URT+(BL2-BLT)*(1.+TRANS(EFVT-EFV2))/2.)*CLT
                                                                           00023390
      R2C=0.736 UR2*CLT
                                                                          00023400
      R2C=.5*R2C
                                                                          00023410
      GD TO 2006
                                                                          00023420
 2004 IF (CL3 .LE. 0.) GO TO 2006
                                                                          00023430
      CLT=CL3
                                                                          00023440
      ROC=0.82*(URT+(BL3-BLT)*(1.+TRANS(EFVT-EFV3))/2.)*CLT
                                                                          00023450
      R2C=0.736*(UR2+(BL3-BL2)*(1.+TRANS(FFV2-FFV3))/2.)*CLT
                                                                          00023460
 2006 IF (CL1 .LE. 0.) GO TO 2010
                                                                          00023470
         CLM=AMAX1(CLT-CL1,0.)
                                                                          00023480
     IN PRESENT VERSION. CLM AND THIS TEM ARE ALWAYS ZERO
                                                                          00023490
         TEM=0.
                                                                          00023500
         IF (CLT .GT. 0.001) TEM=CLM/CLT
                                                                          00023510
         ROC=0.82*(URT+(BL1-BLT)*(1.+TRANS(EFVT-FFV1))/2.)*CL1+ROC*TEM
                                                                          00023520
         R2C=R2C*TEM
                                                                          00023530
 2010 R4C=0.85*(.25+.75*TRANS(EFV3))*(BL4-BL3)*CL
                                                                          00023540
 2015 RO=ROC+(1.-CL)*ROO
                                                                          00023550
      R2=R2C+(1.-CL)*R20
                                                                          00023560
      R4=R4C+(1.-CL)*R40
                                                                          00023570
      OIRAD=4.*STBO+TG+*3
                                                                          00023580
C
                                                                          00023590
      SURFACE ALBEDO
C
                                                                          00023600
C
                                                                          00023610
      IF (COSZ .LF. .01) GO TO 340
                                                                          00023620
      SCOSZ=SO*COSZ
                                                                          00023630
      ALS=.07
                                                                          00023640
      IF (OCEAN) GO TO 335
                                                                          00023650
      ALS=.14
                                                                          00023660
      IF (LAT(J) .LT. SNOWN) GO TO 327
                                                                          00023670
      CLAT=(LAT(J)-SNOWN) *CONRAD
                                                                          00023680
      60 TO 330
                                                                          00023690
327 IF (LAT(J) .GT. SNOWS) GO TO 328
                                                                          00023700
      CLAT=(SNOWS-LAT(J)) +CONRAD
                                                                          00023710
      ALS=.45*(1.+(CLAT-10.)**2)/((CLAT-30.)**2+(CLAT-10.)**2)
                                                                          00023720
     GO TO 335
                                                                          00023730
     IF (LAND) GO TO 335
328
                                                                          00023740
     CLAT=0.0
                                                                          00023750
330
     ALS=-4*(1.+((CLAT-5.)**2))/((CLAT-45.)**2+((CLAT-5.)**2))
                                                                          00023760
```

```
C
C.
                                                                          00023770
      SOLAR RADIATION
                                                                          00023780
 335
      ALAO=AMIN1(1...085-.247*ALOG10(COSZ/COLMR))
                                                                          00023790
      SA=. 349*SCMSZ
                                                                          00023800
                                                                          00023810
      SS=SCOS7-SA
      ASOT=SA*TRSW((EEVO-FFVT)/COSZ)
                                                                          00023820
                                                                          00023830
      ASZT=SA*TRSW((EFVO-EFV2)/COSZ)
                                                                          00023840
      FS2C=0.
                                                                          00023850
      F54C=0.
                                                                          00023860
      S4C=0.
      GO TO (336,336,337), ICLOUD
                                                                          00023870
                                                                          00023880
    CLEAR
 336
                                                                          00023890
     FS20=AS2T
                                                                          00023900
      FS40=SA*TRSW(FFVO/COSZ)
      S40=(1.-ALS)*(FS40+(1.-ALAO)/(1.-ALAO*ALS)*SS)
                                                                          00023910
      IF (ICLOUD .FQ. 1) GO TO 341
                                                                          00023920
   LARGE SCALE CLOUD
                                                                         00023930
                                                                         00023940
 337 IF (CL2 .LE. 0.) GO TO 338
                                                                         00023950
     CLT=CL2
                                                                         00023960
      FS2C=AS2T*CLT
     TFMS=SA*(1.-ALC2)*TRSW((FFVO-EFV2)/CDS7+1.66*(FFVC2+FFV3))
                                                                         00023970
      FS4C=(TEMS+ALC2*AS2T)*CLT
                                                                         00023980
                                                                         00023990
     ALAC=ALC7+ALA()-ALC2*ALA()
     S4C=(1.-ALS)*(TFMS/(1.-ALC?*ALS)+(1.-ALAC)/(1.-ALAC*ALS)*SS)*CLT
                                                                         00024000
                                                                         00024010
     GO TO 339
   LOW LEVEL CLOUD
                                                                         00024020
     IF (CL3 .LE. 0.) GO TO 339
                                                                         00024030
                                                                         00024040
     CLT=CL3
     FS2C=AS2T*CLT
                                                                         00024050
                                                                         00024060
     TEMU=(EFVO-FFV3)/COSZ
     TEMS=SA*(1.-ALC3)*TRSW(TEMU+1.66*(FEVC3+FEV3))
                                                                         00024070
                                                                         00024080
     FS4C=(TEMS+ALC3*SA*TRSW(TFMU))*CLT
                                                                         00024090
     ALAC=ALC3+ALAO-ALC3*ALAO
     S4C=(1.-ALS)*(TEMS/(1.-ALC3*ALS)+(1.-ALAC)/(1.-ALAC*ALS)*SS)*CLT
                                                                         00024100
   THICK CLOUD
                                                                         00024110
339 IF (CL1 •LF• 0•) GO TO 341
                                                                         00024120
     CLM=AMAX1(CLT-CL1.0.)
                                                                         00074130
    IN PRESENT VERSION. CLM AND THIS TEM ARE ALWAYS ZERO
                                                                         00024140
                                                                        00024150
     TEM=0.
                                                                        00024160
     IF (CLT .GT. O.) TEM=CLM/CLT
     1EMU=(FFVO-FFV1)/COSZ
                                                                        00024170
                                                                        00024180
    TEMB=ALC1*TRSW(TEMU)*SA*CL1
    FS2C=SA*(1.-ALC1)*TRSW(TFMU+1.66*FFVC1)*CL1+TFMR+FS2C*TFM
                                                                        00024190
    TEMS=SA*(1.-ALC1)*TRSW(TEMU+1.66*(FEVC1+EEV3))
                                                                        00024200
                                                                        00024210
    FS4C=TFMS*CL1+TEMB+FS4C*TFM
    ALAC = ALC 1+ALAO-ALC 1*ALAO
                                                                        00024220
                                                                        00024230
    S4C=(1.-ALS)*(TFMS/(1.-ALC1*ALS)
   X + (1.-ALAC)/(1.-ALAC*ALS)*SS)*CL1+S4C*TFM
                                                                        00024240
                                                                        00024250
```

C P	MEAN CONDITION	00024260
341	FS2=FS2C+(1CL)*FS20	00024270
	FS4=FS4C+(1CL)*FS40	00024280
	S4=S4C+(1CL)*S40	00024290
	AS1=ASOT-FS2	00024300
	AS3=FS2-FS4	00024310
	GN TO 345	00024320
340	S4=0.0	00024330
	AS3=0.0	00024340
	AS1=0.0	00024350

```
C
                                                                             00024360
 C
     COMPUTATION OF GROUND TEMPERATURE
                                                                             00024370
 C
                                                                             00024380
  345
       TGR = TG
                                                                             00024390
        IF (OCFAN) GO TO 347
                                                                             00024400
       BRAD=S4-R4
                                                                             00024410
       TFM=0.
                                                                             00024420
       IF (ICE.AND.ZZZ.LT.O.1) TFM=CTID/HICE
                                                                             00024430
       A1=CSEN*(T4+CLH*(Q4+WET*(DQG*TG-QG)))
                                                                             00024440
       A2=BRAD+4.*BL4+TFM*TICE
                                                                             00024450
       B1=CSEN*(1.+CLH*DQG*WFT)
                                                                             00024460
       B2=DIRAD+TEM
                                                                             00024470
       TGR=(A1+A2)/(B1+B2)
       IF (LAND. DR. TGR. LT. TICE) GO TO 346
                                                                             00024480
                                                                             00024490
       TGR=TICF
                                                                             00024500
       DR4=DIRAD*(TGR-TG)
                                                                             00024510
       R4=R4+DR4
                                                                             00024520
       R2=R2+.8*(1.-CL)*TRANS(EFV2)*DR4
                                                                             00024530
       RO=RO+.8*(1.-CL)*TRANS(FFVT)*DR4
                                                                             00024540
   347 CONTINUE
                                                                             00024550
C
                                                                             00024560
     SENSIBLE HEAT (LY/DAY) AND EVAPORATION (GM/CM**2/SEC)
C
C
                                                                             00024570
                                                                            00024580
       E4=CFVA*(WET*(QG+DQG*(TGR-TG))-Q4)
                                                                            00024590
       F4=CSFN*(TGR-T4)
                                                                            00024600
       FK=RO4*FK1*WINDF
                                                                            00024610
                                                                            00024620
C
       TOTAL HEATING AND MOISTURE BUDGET
                                                                            00024630
                                                                            00024640
      QN=(C1+C3+PC1+PC3)/CLH+PRFC-2.*E4*DTC3*GRAV/(SP*10.)
                                                                            00024650
      IF (.NOT.LAND) GO TO 350
                                                                            00024660
      RUNOFF=0.
                                                                            00024670
      IF (QN.GT.O. .AND. WET.LT.1.) RUNOFF=.5*WET
                                                                            00024680
      IF (QN.GT.O. .AND. WET.GF.1.) RUNOFF=1.
                                                                            00024690
      WET = GW(J,I)+(1.-RUNDFF)*QN*5.*SP/GRAV/GWM
                                                                            00024700
      IF (WET.GT.1.) WFT = 1.
                                                                            00024710
      IF (WET.LT.O.) WET = O.
                                                                            00024720
  350 CONTINUE
                                                                            00024730
C
                                                                            00024740
 351
      H1=(AS1+R2-R0)*COE1*COLMR+C1+PC1
                                                                            00024750
      H3=(AS3+R4-R2+F4)*CDE1*CDLMR+C3+PC3+PREC*CLH
                                                                            00024760
      H(J_{\bullet}I_{\bullet}1)=0.5*(H1+H3)
                                                                            00024770
      TFMP=0.5*(H1-H3)
                                                                            00024780
C
                                                                            00024790
C
    SURFACE FRICTION
                                                                            00024800
C
  352 CONTINUE
                                                                            00024810
                                                                            00024820
  355 CONTINUE
                                                                            00024830
                                                                           00024840
  358 CONTINUE
                                                                            00024850
```

```
С
                                                                             00024860
C
    PACK FOR OUTPUT
                                                                             00024870
                                                                             00024880
      WW=0.0
                                                                             00024890
      CC(J,1,1)=CL1
                                                                             00024900
      CC(J,1,2)=CL2
                                                                             00024910
      CC(J, 1, 3) = CL3
                                                                             00024920
      CC(J,1,4)=CL
                                                                             00024925
      CPC1(J+1)=(C1+PC1)*0AY/DTC3
                                                                            00024930
      CPC3(J,1)=(C3+PC3)*DAY/DTC3
                                                                             00024940
      CPC1(J.1)=C1+PC1
                                                                            00024950
      CPC3(J,1)=C3+PC3
                                                                            00024960
      PRCLH(J.I) = PRFC *CLH*DAY/DTC3
                                                                            00024970
      SR4(J.1)=R4
                                                                            00024980
      SCALE=SCALEU*COLMR
                                                                            00024990
      KKK=IPK(IFIX(AS1*SCALF),IFIX(AS3*SCALF))
                                                                            00025000
      TT(J,I,1) = XXX
                                                                            00025010
      KKK=IPK(IFIX((R2-R0)*SCALF), IFIX((R4-R2)*SCALF))
                                                                            00025020
      VT(J,I,2)=XXX
                                                                            00025030
      KKK=1PK(1F1X(F4),1F1X(E4*100.*3600.*24.))
                                                                            00025040
      TT(J_{+}I_{+}2)=XXX
                                                                            00025050
      KKK=IPK(IFIX(T4*10.).IFIX(PREC*SCALEP*SP))
                                                                            00025060
      Q3T(J,1)=XXX
                                                                            00025070
      KKK=IPK(IFIX(EX*10.).IFIX((C1+C3+PC1+PC3)*SP*SCALFP/CLH))
                                                                            00025080
     UT(J.1.7)=XXX
                                                                            00025090
      KKK=IPK(IFIX(H]*100.*DAY/DTC3).IFIX(H3*100.*DAY/DTC3))
                                                                            00025100
     PT(J_{\bullet}I) = XXX
                                                                            00025110
      KKK=IPK(IFIX(S4/10.),IFIX(WW*100.))
                                                                            00025120
      SD(J + I) = XXX
                                                                            00025130
360
     CONTINUE
                                                                            00025140
370
     CONTINUE
                                                                            00025150
 375 CONTINUE
                                                                            00025160
 377 CONTINUE
                                                                            00025170
 380 CONTINUE
                                                                            00025180
 390 CONTINUE
                                                                            00025190
400 RETURN
                                                                            00025200
     END
                                                                            00025210
```

VIII. FORTRAN DICTIONARY

PURPOSE

In order to permit the efficient reading of the FORTRAN program and map routine listings, all of the FORTRAN variables used in the code are collected below. For each FORTRAN term a brief identification or meaning is given, together with the term's units (if any) and the location of its first appearance or definition in the program. The locations are not given for certain symbols of widespread use, and those FORTRAN symbols used only in the output map routines of Chapter VII, Section B, are not listed. Conventional FORTRAN notation has been used, with the equivalence in terms of the physical symbols of the model also given where appropriate.

TERM LIST

FORTRAN Symbol	Meaning	Units	Program Location
A	AX * 10 ⁵ , horizontal momentum diffusion coefficient (zero in present version)	m ² sec ⁻¹	13570 INPUT
ALAC	$\alpha_{ac} = \alpha_{c_1} + \alpha_{o} - \alpha_{c_1} \alpha_{o}$, albedo of cloudy atmosphere for Rayleigh scattering		10650 COMP 3
ALA0	α_0 , albedo of clear sky for Rayleigh scattering		10450 COMP 3
ALC1	α _c , albedo of type 1 (penetrating convective) cloud, = 0.7		7610 COMP 3
ALC2	a _{c2} , albedo of type 2 (middle-level overcast) cloud, = 0.6		7620 COMP 3
ALC3	ac ₃ , albedo of type 3 (low-level convective) cloud, = 0.6		7630 COMP 3
ALP	(m/n - 1)/8, longitudinal smoothing parameter		6920 AVRX
LPH(8)	identification parameter (not used)		
ALPHA	<pre>(1) FXCO*(P(J,I)+(P(J-1,I))*(FD(J,I)+FD(J-1,I)) Coriolis force parameter</pre>	m ² mb	5160 COMP 2
	(2) ALP/FNM, longitudinal smoothing weighting factor		6950 AVRX
ALS	α, surface albedo (0.07 for ocean, 0.14 for bare land, a defined function of latitude for ice and snow)		10290-104 COMP 3
NTH(3)	name of month		
APHEL	apihelion, 1 July (= 183.0)	day	13110 INPUT

FORTRAN Symbol	Meaning	Units	Program Location
ASOT	S _T , flux at tropopause of solar radiation subject to absorption	ly day-1	10480 COMP 3
AS1	A ₁ , insolation absorbed by upper layer (= 0 if cos $\zeta \le 0.01$)	ly day-1	10950 COMP 3
AS2T	(S2), flux at level 2 of solar radiation subject to absorption (= FS20)	ly day-1	10490 COMP 3
AS3	A_3 , insolation absorbed by lower layer (= 0 if cos $\zeta \le 0.01$)	ly day ⁻¹	10960 COMP 3
ATEM	$(\theta_3 - \theta_1)/(p_3^K - p_1^K)$, temperature interpolation parameter	deg(mb) ^{-2κ}	8490 COMP 3
AX	horizontal momentum diffusion coefficient (= 0 in present version)	m ² sec ⁻¹	13380 INPUT
AXU(J)	A(DXU(J)/300 km) 4/3, zonal momentum diffusion coefficient (not used)	m ² sec ⁻¹	14800 MAGFAC
(T) AXY	A(DXP(J)/300 km) ^{4/3} , zonal momentum diffusion coefficient (not used)	m ² sec ⁻¹	14810 MAGFAC
(T) nA	A(DYU(J)/300 km) ^{4/3} , meridional momentum diffusion coefficient (not used)	m ² sec ⁻¹	14820 MAGFAC
(T)AX	A(DYP(J)/300 km) ^{4/3} , meridional momentum diffusion coefficient (not used)	n ² sec ⁻¹	14830 MAGFAC
Al	$c_{\Gamma} \left\{ T_{4} + \frac{L}{c_{p}} \left(q_{4} + WET \left[T_{g} \frac{dq_{g}(T_{g})}{dT} - q_{g}(T_{g}) \right] \right) \right\}$	ly day-1	11090 COMP 3
	ground temperature parameter		

FORTRAN Symbol	Meaning	Units	Program Location
A2	$S_4 - \widetilde{R}_4 + 4\sigma T_g^4 + \widetilde{B}T_o$, ground temperature parameter	ly day-1	11100 COMP 3
BCØMN (67040)	common block (see Chapter VII, Subsection A.3)	(various)	0140 COMMON
BIT	control parameter (not used)		
BLANK	logical variable control		
BLT	$\sigma T_{ m T}^4$, long-wave radiation parameter at tropopause	ly day-1	9860 COMP 3
BL1	σT_1^4 , long-wave radiation parameter at level 1	ly day-1	9870 COMP 3
BL2	σT_2^4 , long-wave radiation parameter at level 2	ly day-1	9880 COMP 3
BL3	σT_3^4 , long-wave radiation parameter at level 3	ly day ⁻¹	9890 COMP 3
BL4	$\sigma T_{ m g}^4$, long-wave radiation parameter at ground level	ly day -1	9900 COMP 3
BRAD	$S_4 - \widetilde{R}_4$, ground radiation balance (uncorrected for T_g)	ly day ⁻¹	11060 COMP 3
втем	$(\theta_1^{p_3^{\kappa}} - \theta_3^{p_1^{\kappa}})/(p_3^{\kappa} - p_1^{\kappa})$, temperature interpolation parameter	deg(mb) ^{-ĸ}	8500 COMP 3
B1	$C_{\Gamma}(1 + \gamma_{g})$ WET), ground temperature parameter	ly day deg -1	11110 COMP 3

FORTRAN Symbol	Me aning	Units	Program Location
В2	$4\sigma T_g^3 + \widetilde{B}$, ground temperature parameter ($\widetilde{B} = 0$ unless over ice)	ly day ⁻¹ deg ⁻¹	11120 COMP 3
C(K)	equivalence array (see Chapter VII, Subsection A.3)	(various)	0430 COMMON
CD	C _D , surface drag coefficient		7970-7980 COMP 3
CENTIG	identification for sea-surface temperature		
CEVA	100 $C_{D^{0}4}(\vec{v}_{s} ^{\pi}+G)$, surface evaporation parameter	g cm ⁻² sec ⁻¹	9390 COMP 3
CHECK	data control parameter (not used)		
CL	max(CL1, CL2, CL3), fraction of sky covered by cloud		9700 COMP 3
CLAT	degrees poleward of snowline, used in surface albedo calculation (φ _j -SNØWN,SNØWS-φ _j)*CØNRAD for (northern, southern) hemisphere	deg lat	10330, 1036 COMP 3
CLH	L/c _p , latent heat to specific heat ratio (= 580/.24)	deg	7300 COMP 3
CLKSW	input identification		
CLM	max(CLT - CL1,0), cloud parameter (not used)		10130 COMP 3
CLT	0,CL2 or CL3, cloud parameter (not used)		10030 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
CL1	min(-1.3 + 2.6RH3, 1), fraction of sky covered by type 1 (penetrative convective) cloud		9500 COMP 3
CL2	fraction of sky covered by type 2 (large-scale condensation) cloud (either 0 or 1)		9510 COMP 3
CL3	min(-1.3 + 2.6RH3, 1), fraction of sky covered by type 3 (low-level convective) cloud	1	9520 COMP 3
CNRX	0.01*CONRAD, unit conversion factor (not used)	deg/radian	7440 COMP 3
CNST	GRAV*30.48*HCST, unit conversion factor for surface elevation		16200, 162 INIT 2
CØE	200g/c _p (p _o - p _T)10 ³ , heat capacity of 1/2 unit column	deg ly ⁻¹	7380 COMP 3
CØE1	(1) CØE*DTC3/24*3600, unit conversion factor for heating terms	deg day ly ⁻¹	7390 COMP 3
	(2) $\sigma_1^{\pi\alpha_1/2T_1} + (c_p^{\theta_1/4T_1}) \cdot [(p_3/p_0)^{\kappa} - (p_1/p_0)^{\kappa}],$ level 1 geopotential parameter	m ² sec ⁻² deg ⁻¹	5360 COMP 2
CØE2	$\sigma_3^{\pi\alpha_3/2T_3} + (c_p\theta_3/4T_1) \cdot [(p_3/p_0)^{\kappa} - (p_1/p_0)^{\kappa}],$ level 1 geopotential parameter	m ² sec ⁻² deg ⁻¹	5370 COMP 2
CØE3	$\sigma_1^{\pi\alpha_1/2T_1} - (c_p\theta_1/4T_1) \cdot [(p_3/p_0)^{\kappa} - (p_1/p_0)^{\kappa}],$ level 3 geopotential parameter	m ² sec ⁻² deg ⁻¹	5400 COMP 2
CØE4	$\sigma_3^{\pi\alpha_3/2T_3} - (c_p\theta_3/4T_3) \cdot [(p_3/p_0)^{\kappa} - (p_1/p_0)^{\kappa}],$ level 3 geopotential parameter	m ² sec ⁻² deg ⁻¹	5410 COMP 2
ØLMR	$(p_0 - p_T)/(p_s - p_T)$, column mass ratio (also redefined in 11530, COMP 3 with average $p_s - p_T$)		8060 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
CØNRAD	180/PI, unit conversion factor	deg/radian	7430 COMP 3
ØNV(J,I)	CØNVM, mass convergence at level 1	m ² sec ⁻¹ mb	4220 COMP 1
cønvm	-(mn/2) · πv, net mass convergence into cell surrounding π point (defined for poles in 4560, 4580 COMP 1)	m ² sec ⁻¹ mb	4180-4210 COMP 1
CØNVP	$(h_4 - h_3^*)$ 5 $\Delta t (\tau \tau_r)^{-1}$, penetrating convection parameter		9300 COMP 3
CØSD	cos ζ, cosine of solar declination		15540 SDET
CØSL(J)	$\cos \phi_{f j},$ cosine of latitude		14960 INSDET
CØSZ	cos ζ, cosine of solar zenith angle		7800 COMP 3
CPART	0.5*1.3071*10 ⁷ , a constant (not used)		7690 COMP 3
cs	10 ² C _D , unit conversion factor	cm m ⁻¹	7990 COMP 3
CSEN	$C_{\Gamma} = 10^2 c_p C_{D^0 4} (\vec{v}_s ^{\pi} + G)$ DAY, surface sensible heat flux parameter	ly day ⁻¹ deg ⁻¹	9380 OMP 3
CS4	10 ² c _p C _D DAY, surface sensible heat flux parameter	cm m ⁻¹ cal g ⁻¹ deg ⁻¹ sec day	8000 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
CTI	thermal conductivity of ice (= 0.005)	ly sec ⁻¹ cm deg ⁻¹	7320 COMP 3
CTID	thermal conductivity of ice (= 432)	ly day -1 cm deg -1	7330 COMP 3
CXXX(800)	data control parameter (not used)		
C1	(ΔT ₁) = (h ₃ - h ₁ *)(2 + γ ₁) ⁻¹ 5Δt, level 1 temperature change due to mid-level convective latent heating	deg	8870 COMP 3
C1(800)	array identification		
С3	$(\Delta T_3)_{CM} = (\Delta T_1)_{CM} (1 + \gamma_1) (LR/2)$ $[(h_3 - h_1^*) + (1 + \gamma_1) (LR/2)]^{-1}$	deg	8880 COMP 3
	level-3 temperature change due to mid-level convective latent heating		
DAY	hours in day (= 24), or sec in day (= 86,400)	hr, sec	13420, 13650 INPUT
DAYPYR	days in year (= 365)	day	13070 INPUT
DCLK	logical variable for day counter SDEDY		15050 INSDET
DEC	(23.5PI/180)cos[2PI(DY-173.0)/365], solar declination	radians	15510 SDET
DECMAX	23.5PI/180, maximum solar declination	radians	13080 INPUT
DEFF	$n = \Delta y$, equatorial meridional mesh length	m	6880 AVRX

FORTRAN Symbol	Meaning	Units	Program Location
DELTAP	correction for atmospheric mass loss (= PSF - ZMM)	mb	1430 GMP
DIRAD	4oT _g , long-wave radiation parameter at ground	ly day deg -1	10230 COMP 3
DIST	(DY - 183.0)/365, day of year parameter		15450 SDET
DLAT	Δφ, north/south grid-point separation (= 4 deg) (changed to radians in 13590, INPUT)	deg	13360 INPUT
DLIC	input card identification (not used)		
DLØN	Δλ = 2PI/72, east/west grid-point separation (= 5 deg)	radians	13610 INPUT
DPLK	$p_3^k - p_1^k$	(mb) ^K	8160 COMP 3
DQG	$B_e q_s (T_g) T_g^{-2} = \gamma_g c_p / L$, approximate change of q_s with temperature, $\frac{dq_s (T_g)}{dT}$	deg ⁻¹	9040 COMP 3
DRAT	n/m, grid scale ratio		6900 AVRX
DRAW	$C_{D}(\vec{V}_{g} ^{\pi} + G)$, surface wind drag parameter	m sec ⁻¹	8940 COMP 3
DR4	$4\sigma T_g^3(T_{gr}-T_g)=R_4-\widetilde{R}_4=C_4$, surface long-wave radiation parameter	ly day ⁻¹	11160 COMP 3
DSIG	σ_3 - σ_1 , model sigma increment (= 1/2)		7250 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
DT	Δt in sec (= 360)	sec	13560 INPUT
DTC3	5Δt, time interval between heating steps in COMP 3 (= 1.800)	sec	7280 COMP 3
DTM	Δt in min (= 6)	min	13340 INPUT
DXP(J)	m = aúλ cos φ, east/west distance between π (or u) points	m.	14570 MAGFAC
DXU(J)	m = $a\Delta\lambda(\cos\varphi_j + \cos\varphi_{j-1})/2$, east/west distance between u,v (or v^*) points	m	14610 Magfac
XV(J,I)	zonal distance between π points (= DXP)	m	
DXYP(J)	mm, area of grid cell around m point (defined for polar points in 14680, 14690 MAGFAC)	m ²	14670 MAGFAC
DY	t, day counter (= SDEDY)	day	14530 SDET
DYP(J)	n = (φ _{j+1} - φ _{j-1})a/2, north/south distance between u,v (or v) grid points (defined for polar points in 14640, 14650 MAGFAC)	m	14630 MAGFAC
(L)UYD	$n = a(φ_j - φ_{j-1})$, north/south distance between π (or u^*) grid points	TÒ	14540 MAGFAC
YV(J,I)	meridional distance between u,v points (= DYP)	m	
ECCN	orbital eccentricity (= 0.0178)		13120 INPUT

FORTRAN Symbol	Meaning	Units	Program Location
ED	constant used in air/ground interaction (= 10.0)	m	13400 INPUT
EDR	$(\vec{\mathbf{v}}_{\mathbf{s}} ^{\pi}/2000)[\vec{\mathbf{v}}_{\mathbf{s}} ^{\pi}/2000 + C_{\mathbf{D}}(\vec{\mathbf{v}}_{\mathbf{s}} ^{\pi} + G)]^{-1},$ wind speed weighting factor		9060 COMP 3
EDV	$ \vec{V}_{\rm g} ^{\pi}/2000$, air/ground interaction parameter	m sec ⁻¹	8950 COMP 3
EFVC1	u, effective water vapor for type 1 clouds (= 65.3)	g cm ⁻²	7660 COMP 3
EFVC2	u, effective water vapor for type 2 clouds (= 65.3)	g cm ⁻²	7670 COMP 3
EFVC3	u, effective water vapor for type 3 clouds (= 7.6)	g cm ⁻²	7680 COMP 3
EFVT	$u_T^* = p_3^2 q_3 g^{-1} (2 + K)^{-1} [(p_4/p_3)^{2+K} - (p_T/p_3)^{2+K}],$ effective water vapor in air column below tropopause	g cm ⁻²	9840 COMP 3
EFV0	$u_{\infty}^{*} = p_{3}^{2}q_{3}g^{-1}(2 + K)^{-1}[(p_{4}/p_{3})^{2+K} - (120/p_{3})^{2+K}]$ + 2.526 × 10 ⁻⁵ , effective water vapor in entire atmospheric column	g cm ⁻²	9850 COMP 3
EFV1	$u_1^* = p_3^2 q_3 g^{-1} (2 + K)^{-1} [(p_4/p_3)^{2+K} - (p_1/p_3)^{2+K}],$ effective water vapor in air column below level 1	g cm ⁻²	9830 COMP 3
EFV2	$u_2^* = p_3^2 q_3 g^{-1} (2 + K)^{-1} [(p_4/p_3)^{2+K} - (p_2/p_3)^{2+K}],$ effective water vapor in air column below level 2	g cm ⁻²	9820 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
EFV3	$u_3^* = p_3^2 q_3 g^{-1} (2 + K)^{-1} [(p_4/p_3)^{2+K} - 1],$ effective water vapor in air column below level 3	g cm ⁻²	9810 COMP 3
EG	e _s (T _g), saturation vapor pressure at ground temperature	cb	9020 COMP 3
EQNX	equinox, 22 June (= 173.0)	day	13100 INPUT
ES1	$e_s^{(T_1)}$, saturation vapor pressure at level 1	cb	8350 COMP 3
ES3	$e_s^{(T_3)}$, saturation vapor pressure at level 3	cb	8360 COMP 3
ETA	entrainment factor (= 1)		9250 COMP 3
EVENT	program control parameter		
EVNTH	data control parameter (not used)		
EX	(1) $h_3 - h_1^* = HH3 - HH1S$ $= (L/c_p)[q_3 - q_s(T_1)] - LRc_p/L,$ stability parameter for middle-level convection	deg	8850 COMP 3
	(2) h ₄ - h ₃ = HH4 - HH3S, stability parameter for low-level convection	deg	9210 COMP 3
EXP1	empirical coefficient = 4/3		14780 MAGFAC
E4	$E = \rho_4 C_D (\vec{v}_s ^{\pi} + G)(q_g - q_4)$, surface evaporation rate	g cm ⁻² sec ⁻¹	11240 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
F(J)	f = -2Ω $\partial(\cos \varphi_j)/\partial \varphi$, Coriolis parameter (defined for poles in 14740-14750 MAGFAC)	sec ⁻¹	14710-1473 MAGFAC
FAH	logical variable for temperature input		
FAREN	identification for sea-surface temperature		
FD(J,I)	 (1) Π = mnπ, area-weighted pressure (about π point) (2) V_s², square of surface wind speed 	m ² mb	2560 COMP 1 7550 COMP 3
	(3) F = mmf - u ∂m/∂y, weighted Coriolis force (at π-points)	m ² sec ⁻¹	507C-5120 COMP 2
FDU	π ^u = average mnπ at u,v points (defined for polar caps in 2650-2660 COMP 1)	m ² mb	2640 COMP 1
FEET	identification for topographic height		
FIM	IM, maximum number of longitudinal grid points (= 72)		
FIM1	I-l=i-l, longitudinal grid-point variable		
FJ	J=j, longitudinal grid-point index		
FJE	J index for equator (= 23½)		14460 MAGFAC
FJM	JM, maximum number of latitudinal grid points (= 46)		
FK	$\rho_4 C_D g(\vec{v}_s ^{\pi} + G)(\sigma_3 - \sigma_1)^{-1}(p_O - p_T)^{-1},$ surface friction parameter	sec ⁻¹	11260 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
FK1	$gC_D(\sigma_3 - \sigma_1)^{-1}(p_0 - p_T)^{-1}$, surface friction parameter	cm ² g ⁻¹	8010 COMP 3
FL	2MOD(K,2)+1, indicator for u,v data at levels 1 and 3		12350 COMP 4
FLUX	(1) u Δt, v Δt, mass flux parameters	m ² mb	3310, 3520 COMP 1
	(2) $-u^*\Delta t/4$, $-v^*\Delta t/4$, mass flux parameters at level 1	m ² mb	3390, 3610 COMP 1
	(3) $5u^{*}\Delta t/4$, $5v^{*}\Delta t/4$, mass flux parameters at level 3	m ² mb	3610, 3620 COMP 1
	(4) various momentum flux parameters	m ² mb	3830, 3910 3980, 4050 COMP 1
FLUXQ	FLUX*Q3M (and other definitions), moisture flux parameters	m ² mb	3480, 3660 COMP 1
FLUXT	FLUX*(T(J,I,L)+T(J,IP1,L)) (and other definitions), temperature advection parameters	m ² mb deg	3320-3580 COMP 1
FLUXU	FLUX*(U(J,I,L)+U(J,IM1,L)) (and other definitions), u-momentum advection parameters	m ² sec ⁻¹ mb	3840-4060 COMP 1
FLUXV	FLUX*(V(J,I,L)+V(J,IM1,L)) (and other definitions), v-momentum advection parameters	m ² sec ⁻¹ mb	3870-4090 COMP 1
FM	FMX*10 ⁻⁵ , a constant		13610 INPUT
FMX	constant (= 0.2)		13400 INPUT
FNM	NM, the integer part of DRAT		6940 AVRX

FORTRAN Symbol	Meaning	Units	Program Location
FSDEDY	t, day of year (= SDEDY)	day	7450 COMP 3
FS2	$S_2^A + CL \alpha_{C_1} (S_{CT_1}^A)$ ", total flux of S_0^A at level 2 (plus reflected flux from type 1 cloud top)	ly day-1	10920 COMP 3
FS2C	(1) AS2T*CLT, clear sky flux at level 2, times type 2 or 3 cloudiness	ly day ⁻¹	10620, 10710 COMP 3
	(2) CL $\left(S_2^A\right)'' + \alpha_{C_1} \left(S_{CT_1}^A\right)''$ flux of S_0^A at level 2 (plus flux reflected from cloud top) times type 1 cloudiness	ly day ⁻¹	10850 COMP 3
FS20	(S2), flux of S0 at level 2 for clear sky	ly day ⁻¹	10550 COMP 3
FS4	$S_4^A + CL \alpha_{c_1} \left(S_{CT_1}^A\right)''$, total flux of S_0^A at level 4 (plus reflected flux from cloud top)	ly day ⁻¹	10930 COMP 3
FS4C	$CL\left[\left(S_{4}^{A}\right)'' + \alpha_{c_{1}}\left(S_{CT_{1}}^{A}\right)''\right], \text{ flux of } S_{0}^{A} \text{ reaching level 4 (plus flux reflected from cloud top)}$	ly day ⁻¹	10640, 10740 10870 COMP 3
FS 40	(S4), flux of Sat level 4 for clear sky	ly day ⁻¹	10560 COMP 3
FXCØ	(1) TEXCO/2, time-step factor for advection (other definitions in 3770, 5030 COMP 1)	sec	3270, 4710 COMP 1
	(2) DT/4, time-step factor for pressure force	sec	5470 COMP 2
	(3) \(\Delta t / 8c \), time-step factor in thermodynamic energy equation	m ⁻² sec ³ deg	6100 COMP 2

FORTRAN Symbol	Meaning	Units	Program Location
FXCØ1	(1) TEXCØ/24, time-step factor for advection	sec	3780 COMP 1
	(2) DT/2, time-step factor for pressure force	sec	5480 COMP 2
	(3) $\Delta t/4c_p$, time-step factor in thermodynamic energy equation	m ⁻² sec ³ deg	6110 COMP 2
F4	$\Gamma = C_{\Gamma}(T_g - T_4)$, surface sensible heat flux	ly day-1	11250 COMP 3
GAMG	$\gamma_g = (L/c_p)B_e q_s (T_g)T_g^{-2}$, latent heat parameter	a-	9080 COMP 3
GAM1	$\gamma_1 = (L/c_p)B_e q_s (T_1)T_1^{-2}$, latent heat parameter		8420 COMP 3
GAM3	$Y_3 = (L/c_p)B_e q_s(T_3)T_3^{-2}$, latent heat parameter	/ -	8430 COMP 3
GRAV	g, acceleration of gravity (= 9.81)	m sec -2	13420 INPUT
GT(J,1)	Tg, ground temperature (= Tgr after radiation correction)	deg	11200 COMP 3
W(J,I)	GW = WET, ground wetness (0 ≤ GW ≤ 1)		11360 COMP 3
GWM	ground water mass (= 30)	g cm ⁻²	7270 COMP 3
J,I,1)	(1) (H1 + H3)/2, average heating	deg	11450 COMP 3
	(2) (H1 + H3)mn/2, area-weighted average heating	deg m ²	11870 COMP 3
	[Note: H(J,I,2) not used.]		OOTH 3

FORTRAN Symbol	Meaning	Units	Program Location
HACØS	cos d cos (t + λ), solar zenith angle parameter		7780 COMP 3
нсѕт	unit conversion factor for surface elevation (= 1 if height in 10 ² ft)		16200, 162 INIT 2
EIGHT(J)	surface height data	h ft, dm	16310 INIT 2
ннс	Tg + (L/cp)qg WET, ground equivalent temperature	deg	9050 COMP 3
HHIS	$h_1^* = \theta_3 (p_s/p_o)^k + (\theta_1 - \theta_3) (p_2/p_o)^k + (L/c_p)q_s(T_1),$ level 1 stability parameter	deg	8790 COMP 3
нн3	$h_3 = \theta_3 (p_s/p_o)^K + (L/c_p)q_3$, level 3 stability parameter	deg	8770 COMP 3
генн г	$h_3^* = \theta_3 (p_s/p_o)^K + (L/c_p)q_s(T_3),$ level 3 stability parameter	deg	8780 COMP 3
нн4	(1) \tilde{h}_4 , low-level temperature parameter	deg	9070 COMP 3
	(2) h ₄ = T ₄ + (L/c _p)q ₄ , level 4 stability parameter	deg	9230 COMP 3
	(3) h ₃ , level 3 stability parameter	deg	9252 COMP 3
нн4Р	h ₄ = HH4, level 4 stability parameter	deg	9220 COMP 3
HICE	effective ice thickness (= 300)	cm	7340 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
HRGAS	R/2, one-half the dry air gas constant	m ² sec ⁻² deg ⁻¹	4990 COMP 2
HSCL	unit indicator for surface height		16240 INIT 2
Н1	$H_1 = (A_1 + R_2 - R_0)(2g/\pi c_p)5\Delta t + (\Delta T_1) + (\Delta T_1)_{CM}$ total heating at level 1 (over 5\Delta t interval)	deg	11430 COMP 3
н3	H ₃ = $(A_3 + R_4 - R_2 + \Gamma)(2g/\pi c_p)5\Delta t + (\Delta T_3)$ $+ (\Delta T_3) + (\Delta T_3),$ $CP LS$ total heating at level 3 (over $5\Delta t$ interval)	deg	11440 COMP 3
I	 i, longitude grid-point index (I = 1 is λ = 0 at 180 deg W) 		
IC(800)	integer array (= C)		
ICE	ice-cover location indicator		7860 COMP 3
21(800)	array identification (alternate to C)		
ICLØUD	cloud parameter (= 1 for clear, = 2 for partly cloudy, = 3 for overcast)		9430, 9710 9720 COMP 3
ID	identification on input data card		
IDAY	day number (= TAU/RØTPER)		0500 CONTROL
IH	IM/2 + 1, longitudinal grid-point parameter (= 37)		

FORTRAN Program	Meaning	Units	Program Location
IHALF(2)	two half words that form IWD	-	
IL	(1) card identifier for topography		16320 INIT 2
	(2) left half word in packed data		
	(3) index counter		
ILEV	level identification parameter (not used)		
ILH	entry point for left half word in IPKWD)
IL1) IL2 IL3	temporary identification of topography cards	-	-
IM	maximum number of east/west grid points (= 72)		
IMM2	IM - 2, longitudinal grid-point index		
IM1	I - 1, longitudinal grid-point index		
INU	identification for card reader input		
IPKWD	pack data word (argument for ILH, IRH)		
IP1	I + 1, longitudinal grid-point index		
IR	right half word in packed dats	-	
IRH	entry point for right half word in IPKWD		
ISINT	control parameter (not used)		
IWD	word containing two half words		

FORTRAN Symbol	Meaning	Units	Program Location
J	j, latitudinal grid-point index		
JDYACC	variable for day of month determination		15350 SDET
JЕ	JM/2 + 1, latitudinal grid-point index (= 24)		6870 AVRX
JL	index counter		
JM	maximum number of north/south grid points (= 46)		
JMM1	JM - 1, latitudinal grid-point index		
JMM2	JM - 2, latitudinal grid-point index		
JTP	variable input/output identification (not used)		=
JUMP	control parameter (not used)		
К	level or variable indicator (in friction calculation K = 1 or 2)		
KAPA	$\kappa = R/c_p$, thermodynamic ratio (= 0.286)		
KEYS (J)	logical control parameters (not used)		
ккк	packed data location in COMP 3		11690 COMP 3
KNT	variable input/output identification (not used)		
KSET	array for KEY control characters (not used)		
КТР	variable identification for history tape		

FORTRAN Symbol	Meaning	Units	Program Location
K1	2K, identifier for u ₁ or v ₁		11550 COMP 3
К2	2K + 1, identifier for u ₃ or v ₃		11560 COMP 3
L	level indicator (L = 1 for level 1, L = 2 for level 3)		
LAND	land location indicator	-	7870 COMP 3
LAT(J)	φ_j , latitude of grid point	radians	14490 MAGFAC
LDAY	t, day numbering origin (= 0)	d a y	15010 INSDET
LTP	variable input/output identification (not used)		
LYR	year (if reset from input)	year	15040 INSDET
М	logical KEY function argument		
MARK	MARK 1, control number in topography deck (= 0 if deck not read)	<u></u>	13680 INPUT
MAPGEN	map generation identification		
MAPLST (3,40)	map list identification (not used)		
MAXDAY	DAYPYR + 10 ⁻² , maximum allowed day in year (= 365.01)	day	15280 SDET

FORTRAN Symbol	Meaning	Units	Program Location
METER	identification for topographic height		<u></u>
MNTHDY	identification for day of month	day	
ØNTH (12)	days in each month (beginning with January)	day	
MRCH	identifier for steps in time integration (= 1, 2, 3, or 4)		1920, 2120-2140 STEP
MTP	variable identification for printed output		
N	logical variable in KEYS array		
NCYCLE	control parameter for MRCH (= 5)	-	13340 INPUT
NC3	number of time steps between uses of subroutine COMP 3 (= 5)		13340 INPUT
NM	integer part of DRAT		6930 AVRX
nøøut	map generation output parameter		
NPØL	zonal mean at north pole	(various)	
NS	control parameter for time integration	-	2110 STEP
NSTEP	control parameter for time integration		0280 CONTROL
ØCEAN	ocean location indicator		7850 COMP 3
ØFF	solar declination control parameter		

FORTRAN Symbol	Meaning	Units	Program Location
P(J,I)	π = p _s - p _T , surface pressure parameter	mb	
PASS2	data control parameter (not used)		
PB1	(1) CONV(1,I), parameter for south pole mass convergence	m ² sec ⁻¹ mb	4320-4410 COMP 1
	(2) QT(1,I,L), parameter for south pole calculations	(various)	6450-6500 COMP 2
PB2	(1) CONV(JM,I), parameter for north pole mass convergence	m ² sec ⁻¹ mb	4330-4420 COMP 1
	(2) QT(JM,I,L), parameter for north pole calculations	(various)	6460-6510 COMP 2
PB3	PV(1,I), parameter for south pole mass convergence	m ² sec ⁻¹ mb	4340-4430 COMP 1
PB4	PV(JM,I), parameter for north pole mass convergence	m ² sec ⁻¹ mb	4350-4440 COMP 1
PC1	$(\Delta T_1) = (h_4 - h_3^*)\tau_1^{5\Delta t/\tau\tau}$, level 1 temperature change due to penetrating convection	deg	9310 COMP 3
PC3	(ΔT_3) = $(h_4 - h_3^*)\tau_2^{5\Delta t/\tau\tau}$, level 3 temperature change due to penetrating convection	deg	9320 COMP 3
HI(J,I)	(1) ϕ_1 or ϕ_3 , level 1 or 3 geopotential	m ² sec ⁻²	5380, 5420 COMP 2
	(2) σ ₁ πα ₁ or σ ₃ πα ₃ , pressure gradient parameter	m ² sec ⁻²	5760 COMP 2
PHI4	φ ₄ = VPHI4(J,I), surface geopotential (= 0 if ocean)	m ² sec ⁻²	5300 COMP 2

FORTRAN Symbol	Meaning	Units	Program Location
PI	constant π = 3.1415926		13040 INPUT
IT(J,I)	$-(mn/2)[\nabla \cdot \pi(\vec{V}_1 + \vec{V}_3)] = CØNV(J,I) + PV(J,I),$ net column mass convergence (= π tendency)	$m^2 sec^{-1}mb$	4520 COMP 1
PK1	p ₁ , upper-level pressure to kappa power	(mb) ^K	4600 COMP 1
PK3	p ₃ ^K , lower-level pressure to kappa power	(mb) ^K	4610 COMP 1
PL1	p ₁ = p _T + σ ₁ π, level 1 pressure	dw	4580 COMP 1
PL1K	p ₁ ^K , upper-level pressure to kappa power	(mb) ^K	8120 COMP 3
PL2	p ₂ = p _T + π/2, level 2 pressure	шр	8100 COMP 3
P1,2K	p ₂ ^K , middle-level pressure to kappa power	(mb) ^K	8140 COMP 3
PL3	$p_3 = p_T + \sigma_3^{\pi}$, level 3 pressure	mb	4590 COMP 1
PL3K	p ₃ ^K , lower-level pressure to kappa power	(mb) ^k	8130 COMP 3
PM	p _o - p _T , standard tropospheric pressure depth (= 800)	mb	7370 COMP 3
PREC	$(\Delta q)_{LS} = [q_3 - q_8(T_3)] \cdot [1 + (L/c_p)B_eq_8(T_3)T_3^{-2}]^{-1},$ level 3 moisture change due to large-scale condensation		8650 COMP 3

FORTRAN Symbol	Meaning	Units	Location
PSF	reference global mean surface preseure (= 984)	mb	1430 GMP, 13480 INPUT
PSL	p _o , reference sea-level pressure (= 1000)	mb	13460 1NPUT
PT(J,I)	π + Δt PIT/mn, updated π value	mb	4540 COMP 1
PTRK	P _T ^K	(mb) ^K	8150 COMP 3
PTRØP	p _T , tropopause pressure (= 200)	mb	13460 INPUT
PU(J,1)	(1) u = nπu, zonal mass flux (at u points)	m ² sec ⁻¹ mb	2780-2890 COMP 1
	(2) TEMP 1, provisional pressure gradient parameter	m ² sec ⁻² mb	5560 COMP 2
	(3) TEMP, provisional term in energy equation (other provisional definition in 6270 COMP 2, 12320 COMP 4)	sec ² deg	6190 COMP 2
PV(J,I)	(1) v = mmv, meridional mass flux (at v points)	m ² sec ⁻¹ mb	2910-2940 COMP 1
	(2) CØNVM, mass convergence at level 2	m ² sec ⁻¹ mb	4230 COMP 1
	(3) polar PU equivalent (various definitions) (other definitions in COMP 4)	m ² sec ⁻¹ mb	3050-3170 COMP 1
P1CB	p ₁ /10, level 1 pressure in centibars	съ	8370 COMP 3
P10K	P _o	(mb) ^r	7310 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
РЗСВ	p ₃ /10, level 3 pressure in centibers	cb	8380 COMP 3
P4	p ₄ = p _s = π + p _T , surface pressure	mb	8070 COMP 3
P4CB	p ₄ /10, surface pressure in centibers	cb	8390 COMP 3
P4K	P ₄	(mb) ^K	80 80 COMP 3
(J,I,K)	equivalence array (K = 1, 2, 9; see Chapter VII, Subsection A.3)	(various)	2060 STEP
(J,I,9)	array identification (alternate to QT)	-	
QG	q _s (T _g), ground-level saturation mixing ratio		9030 COMP :
QN	Δq ₃ , total level 3 mixing ratio change due to convection, condensation, evaporation	-	11300 COMP 1
QS1	q _s (T ₁), level 1 saturation mixing ratio		8400 COMP :
QS3	$q_s(T_3)$, level 3 saturation mixing ratio		8410 COMP
(J,I,K)	equivalence array for temporary variables (K = 1, 2, 8; see Chapter VII, Subsection A.3)	(various)	2070 STEP
Q T∲ T (J,I,20)	equivalence array (see Chapter VII, Subsection A.3)	(various)	0140 COMMO

FORTRAN Symbol	Meaning	Units	Program Location
Q3(J,I)	q ₃ , level 3 mixing ratio		
Q3M	level 3 moisture parameter		3410, 3660 COMP 1
Q3R	q ₃ - (Δq ₃) , level 3 mixing ratio after large-scale LS condensation		8680 CCMP 3
Q3RB	$\max(q_3, 10^{-5})$, provision to insure $q_3 \ge 10^{-5}$		9770 COMP 3
3T(J,I)	q ₃ H, pressure-area-weighted level 3 mixing ratio (also moisture flux at 3710, 3720 COMP 1)	m ² mb	2570 COMP 1
Q4	(1) RH4[q _g (T _g) + (c _p /L) _{Yg} (T ₄ - T _g)], level 4 moisture parameter		9110 COMP 3
	(2) q ₄ = q ₈ (T ₃) + [0 ₃ (p ₈ /p ₀) ^K - T ₄](c _p /L), level 4 mixing ratio		9350 COMP 3
RAD	a, earth's radius (= 6375) (redefined in m in 13640, INPUT)	km	13420 INPUT
RCNV	DTC3/TGNV, = $5\Delta t/\tau$ = $1/2$	tr	7290 COMP 3
RESET	day and year control parameter		
RGAS	R, gas constant for dry air (= 287)	m ² deg ⁻¹ sec ⁻	2 13440 INPUT
RH3	$RH_3 = q_3/q_8(T_3)$, relative humidity at level 3	=	8450 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
RH4	RH ₄ = 2RH ₃ · GW(RH ₃ + GW) ⁻¹ , ground-level humidity measure		9000 COMP 3
RØT	t = t · 2PI/24 hr, hour of day (converted to radians)	radians	7700 COMP 3
RØTPER	period of solar rotation (= 24.0)	hr	13090 INPUT
RØ4	$\rho_4 = \rho_s (RT_4)^{-1}$, air density at level 4 (surface)	g cm ⁻³	9370 COMP 3
RSDIST	square of the normalized earth/sun distance		15520 SDET
RSETSW	input identification		
RUNØFF	WET/2, fraction of rainfall which runs off	Ħ	11340 COMP 3
RO	(1) R, long-wave radiation parameter at tropopause	ly day ⁻¹	10200 COMP 3
	(2) $R_0 = \tilde{R}_0 + 0.8(1 - CL)(R_4 - \tilde{R}_4) \cdot \tau(u_0^{\frac{4}{3}})$, net upward long-wave radiative flux at tropopause	ly day ⁻¹	11190 COMP 3
ROC	R"CL, cloudy sky part of long-wave radiative flux at tropopause, times cloudiness (separately defined for cloud types 1, 2, 3)	ly day ⁻¹	10040, 10100 10170 COMP 3
ROO	R', clear sky part of long-wave radiative flux at tropopause	ly day ⁻¹	9980 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
R2	(1) \widetilde{R}_2 , long-wave radiation parameter at level 2 (2) $R_2 = \widetilde{R}_2 + 0.8(1 - CL)(R_4 - \widetilde{R}_4) + \tau(u_2^*)$,		10210 COMP 3
	net upward long-wave radiative flux at level 2	ly day ⁻¹	11180 COMP 3
R2C	R"CL, cloudy sky long-wave radiative flux at level 2, times cloudiness (separately defined for cloud types 1, 2, 3)	ly day-1	10050, 10010 10180 COMP 3
R20	R', clear sky part of long-wave radiative flux at level 2	ly day-1	9990 COMP 3
R4	(1) \widetilde{R}_4 , long-wave radiation parameter at level 4	ly day-1	10220 COMP 3
	(2) $R_4 = \tilde{R}_4 + \sigma T_g^3 (T_{gr} - T_g)$, net upward long- wave radiative flux at level 4 (surface)	ly day-1	11170 COMP 3
R4C	R'CL, cloudy sky long-wave radiative flux at level 4 (ground), times cloudiness	ly day ⁻¹	10190 COMP 3
R40	R ₄ , clear sky part of long-wave radiative flux at level 4 (ground)	ly day-1	10000 COMP 3
SA	$S_0^A \sim 0.349 S_0 \cos \zeta$, part of incoming solar radiation subject to absorption	ly day ⁻¹	10460 COMP 3
CALE	scale factor for layer radiative heating	deg ly ⁻¹	11680 COMP 3
CALEP	scale factor for layer latent heating	mam day 1 mb 1	7420 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
SCALEU	(10/c _p)(2g/π), scale factor for column heat capacity	deg ly ⁻¹	7400 COMP 3
S C ØSZ	S _o coa ζ, to cal solar radiation at top of atmosphere	ly day ⁻¹	10280 COMP 3
SD(J,I)	$(mn/2)[\nabla \cdot \pi(\vec{V}_3 - \vec{V}_1)] = CONV(J,I) - PV(J,I),$ net masa convergence (= $\hat{S} = 2mn\pi\hat{\sigma}$)	m ² aec ⁻¹ mb	4530 COMP 1
SDEDY	day counter starting from origin LDAY	day	15030 INSDET
SDU	S ^u , four-point average mass convergence	m ³ sec ⁻² mb	4750 COMP 1
SEASØN	(DY-173.0)/365, time parameter in aclar declination		15440 SDET
SIG1	σ ₁ , upper-level σ value (= 1/4)		7230 COMP 3
SIG3	σ ₃ , lower-level σ value (= 3/4)		7240 COMP 3
SIGCØ	FL/2, level designator		12360 COMP 4
SIND	sin ζ, sine of solar declination		15530 SDET
INL(J)	ain φ_j , sine of latitude		14950 Insdet
SINT	control parameter (not used)		

FORTRAN Symbol	Meaning	Units	Program Location
SN(J,I)	identification for VT(1,1,2)		
Snøw	designator for snow-covered land	-	7880 COMP 3
SNOWA	snowline in northern hemisphere (varies ±15° about 60 deg N)	radians	7460 COMP 3
Snows	snowline in southern hemisphere (= 60 deg S)	radians	7470 COMP 3
SP	P(J,I) = π, surface pressure parameter	mb	8050 COMP 3
SPØL	zonal mean at south pole	(various)	
SS	SS = 0.651S cos 5, part of incoming solar radiation subject to scattering	ly day-1	10470 COMP 3
SS1	$\theta_3(p_s/p_o)^{\kappa} + (\theta_1 - \theta_3)(p_2/p_o)^{\kappa}$, convective stability parameter	deg	8760 COMP 3
SS2	$\theta_3(p_s/p_o)^{\kappa} + \frac{1}{2}(\theta_1 - \theta_3)(p_2/p_o)^{\kappa}$, convective stability parameter	deg	8750 COMP 3
583	θ ₃ (p _s /p _o) ^K , convective stability parameter	deg	8740 COMP 3
TAGI	logical variable for zonal map staggering		
TAGJ	logical variable for meridional map staggering		
STBØ	σ, Stefan-Boltzman constant	ly day -1 deg -4	7650 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
S0	S _o , solar constant (modified for earth/sun distance)	ly day ⁻¹	7610 COMP 3
S4	S = (1 - CL)S' + CL S", total flux of short- wave radiation absorbed by the ground	ly day-1	10940 COMP 3
\$4C	S", cloudy sky part of short-wave radiation absorbed by the ground (defined separately for cloud types 1, 2, 3)	ly day ⁻¹	10660, 1076 10890 COMP 3
\$40	S', clear sky part of short-wave radiation absorbed by the ground	ly day ⁻¹	10570 COMP 3
(J,I,L)	level 1 or level 3 temperature (also for temperature after heating and smoothing in 11470, 11980, COMP 3); L = 1 denotes T ₁ , L = 2 denotes T ₃	deg	8280 COMP 3
TAU	time in hr	hr	
TAUC	input identification (not used)		
TAUD	frequency of recalculation of solar declination (= 24)	hr	13310 INPUT
TAUE	day of integration end	day, hr	13310, 1332 INPUT
TAUH	frequency of history tape storage (= 6)	hr	13310 INPUT
TAUI	TAUID • 24 + TAUIH, starting time (in hr)	hr	13290 INPUT
TAUID	starting time	day	13730

FORTRAN Symbol	Meaning	Units	Program Location
TAUIH	hour of starting time	hr	13740 INPUT
TAUØ	output interval (= 24)	hr	13310 INPUT
TAUX	starting time parameter	hr	13700 INPUT
TBAR	$(T_1 + T_3)/2$, average temperature	deg	12830 COMP 4
TCNV	relaxation time for cumulus convection (= 3600)	sec	13400 INPUT
rD(J,I)	(T ₃ - T ₁)/2π, vertical temperature (lapse-rate) parameter	deg mb ⁻¹	12740 COMP 4
TDBAR	smoothed value of TD	deg mb ⁻¹	12790 COMP 4
TDSM	weighted TD parameter	deg	12820 COMP 4
TEM	B, conduction coefficient for ice (also defined as cloudiness parameters in COMP 3 but not used)	ly day -1 deg -1	11080 COMP 3
ТЕМВ	short-wave radiative flux reflected from type l cloud top	ly day ⁻¹	10840 COMP 3
TEMP	(1) intermediate parameter in thermodynamic energy conversion calculation	sec ² deg	6160-6340 COMP 2
	(2) τ, penetrating convection parameter	deg	9280 COMP 3
	(3) (H1 - H3)/2, heating parameter	deg	11460 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
TEMP	(4) vertical wind shear (u ₁ - u ₃ or v ₁ - v ₃)	m sec-1	11570 COMP 3
	(5) HA, averaged heating	deg	11930-11950 COMP 3
TEMP 1	(1) intermediate parameter in pressure gradient calculation	m ² sec ⁻² mb	5550, 5810 COMP 2
	(2) $\tau_1 = (h_3^* - h_1^*)(1 + \gamma_1)^{-1} + LR/2$, penetrating convection parameter	deg	9260 COMP 3
TEMP2	(1) intermediate parameter in pressure gradient calculation	m ³ sec ⁻² mb	5570, 5830 COMP 2
	(2) $\tau_2 = \theta_3 (p_4/p_0)^K - T_4 + LR/2$, penetrating convection parameter	deg	9270 COMP 3
TEMS	(S ₄)", flux of S ₀ reaching level 4 through clouds (defined separately for cloud types 1, 2, 3)	ly day ⁻¹	10630, 10730 10860 COMP 3
TEMS CL	sea-surface temperature unit indicator		15910 INIT 2
TEMU	$(u_{\infty}^* - u_1^* \text{ or } u_3^*)$ sec ζ , parameter for transmission of S_0^A through type 1 or type 3 clouds	g cm ⁻²	10720, 10830 COMP 3
TEM1	$p_3^2 q_3 (2 + K)^{-1} g^{-1}$, water vapor parameter	g cm ⁻²	9790 COMP 3
TEM2	$p_3^2 q_3^2 (2 + K)^{-1} g^{-1} (p_4/p_3)^{2+K}$, water vapor parameter	g cm ⁻²	9800 COMP 3
TETAM	θ ₂ p _o ^{-κ} , temperature parameter	deg mb - K	4620 COMP 1

FORTRAN Symbol	Meaning	Units	Program Location
TETA1	θ ₁ , level 1 potential temperature	deg K	8720 COMP 3
TETA3	θ_3 , level 3 potential temperature	deg K	8730 COMP 3
TEXCO	DT, time step (= 360) (also defined as DT/2 in 2480 COMP 1, 4970 COMP 2 for advective terms)	sec	2470 COMP 1 4960 COMP 2
TG	Tg, ground temperature (original)	deg K	8560 COMP 3
TGR	(1) T = T if ocean, T = T if ice or snow and T > T	deg K	11040 COMP 3
	(2) T _{gr} = (A1 + A2)/(B1 + B2), ground temperature (revised)	deg K	11130 COMP 3
TG00	TOPOG, ocean surface temperature or surface geopotential	deg or m ² sec	7840 COMP 3
THL1	$\theta_1^{p_0^{-\kappa}}$, level 1 temperature parameter	deg mb - K	8220 COMP 3
THL3	$\theta_3^{p-\kappa}$, level 3 temperature parameter	deg mb ^{-K}	8230 COMP 3
THRP	time in days and fractions (= TAU/24)	day	1970 STEP
TICE	T _o , melting point of ice (= 273.1)	deg K	7350 COMP 3
TØFDAY	t = time of day counter (Greenwich hours)	hr	14120 INPUT

FORTRAN Symbol	Meaning	Units	Program Location
røpøg(J,I)	surface topography indicator	deg or m ² sec	16090 INIT 2
TRANS(X)	τ(x) = (1 + 1.75x ^{0.416}), slab transmission function for long-wave radiation (x = u _n in g cm ⁻²)		7150 COMP 3
TREADY	integration control parameter (not used)		
TRST	tape output control parameter		
TRSW(X)	1 - 0.271x ^{0.303} , transmission function for short-wave radiation (x = u [*] in g cm ⁻²)		7160 COMP 3
TS(J,I)	identification for UT(1,1,2)		
TSPD	DAY/DTC3, number of source (COMP 3) calculations per day (= 48)		7410 COMP 3
T(J,I,L)	(1) T, temperature	deg K	1960 STEP
	(2) TII, pressure-area-weighted temperature	m ² deg ක්ර	2620 COMP 1
TTRØP	T_T or T_0 , tropopause temperature (extrapolated from T_1 and T_3 in p^K space	deg K	8510 COMP 3
T1	T ₁ , level 1 temperature (redefined if convective adjustment occurs)	deg K	8200, 8280 COMP 3
Т2	T ₂ , level 2 temperature	deg K	8520 COMP 3

FORTRAN Symbol	Meaning	Units	Program Location
Т3	T ₃ , level 3 temperature (redefined if convective adjustment or large-scale condensation occurs in 8660, COMP 3)	deg K	8210, 8270 COMP 3
Т4	T ₄ , air temperature at level 4 (redefined if convection occurs in 9340, COMP 3)	deg K	9090 COMP 3
U(J,I,L)	u, zonal wind speed (L = 1 designates u ₁ , L = 2 designates u ₃)	m sec ⁻¹	
URT	$\sigma T_T^4 \tau (u_\infty^* - u_T^*)$, total long-wave flux at tropopause from atmosphere above tropopause	ly day-1	9950 COMP 3
UR2	$\sigma T_2^4 \tau (u_{\infty}^* - u_2^*)$, total long-wave flux at level 2 from atmosphere above level 2	ly day ⁻¹	9960 COMP 3
us	$u_s = 0.7(3u_3 - u_1)/2$, surface zonal wind speed	m sec ⁻¹	7530 COMP 3
T(1,1,1)	provisional variable during zonal smoothing		7000 AVRX
T(J,1,L)	(1) unu, pressure-area-weighted zonal wind speed (2) un, value after Coriolis force calculation	m ³ mb sec ⁻¹	2670 COMP 1 9170 COMP 2
V(J,I,L)	v, meridional wind speed (L = 1 designates v ₁ , L = 2 designates v ₃)	m sec -1	
VAD	TEXCO Suu2, v2/2, vertical advection of u,v momentum	m ³ sec ⁻¹ mb	4780, 4810 COMP 1

FORTRAN Symbol	Meaning	Unite	Program Location
VAK	2 + K, parameter for effective water amount		9780 COMP 3
VIVA	data control parameter (not used)	Tea.	=
VKEYV	name of labeled common block (KEYS)		
VM1	polar mass flux parameters (various definitions)		2990-3120 COMP 1
VM2	polar mase flux parameters (various definitions)	-	3000-3210 COMP 1
HI4(J,I)	φ ₄ , eurface (level 4) geopotential (⊕ 0 if ocean)	a²sec ^{−2}	1570 VPHI4
VPK1	(p ₁ /p ₃) ^K , level 1 geopotential parameter		5330 COMP 2
VPK3	(p ₃ /p ₁) ^K , level 3 geopotential parameter	-	5340 COMP 2
VPS1	σ ₁ π/p ₁ , level 1 pressure gradient parameter		5310 COMP 2
VPS3	σ ₃ π/p ₃ , level 3 pressure gradient parameter		5320 COMP 2
VS	v _s = 0.7(3v ₃ - v ₁)/2, surface meridional wind speed	m sec ⁻¹	7540 COMP 3
r(J,I,L)	(1) vNu, pressure-area-weighted meridional wind speed	m ³ sec ⁻¹ mb	2680 COMP 1
	(2) vII, value after Coriolis force calculation	m ³ sec ⁻¹ mb	5190 COMP 2

FORTRAN Symbol	Meaning	Units	Progress Location
W(J,I)	temporary variable for H, PV, PHI, QT	(various)	
WET	GW, ground wetness (scaled 0 to 1)		11360 COMP 3
WINDF	$ \vec{V}_g ^{\pi}$ + G, surface wind speed with gustiness correction (G = 2.0 m sec ⁻¹)	m sec ⁻¹	8930 COMP 3
WMAG	$ \vec{V}_g ^{\pi}$, surface wind speed (root-mean-square value)	m sec-1	7940-7950 COMP 3
WILDAMW	$ \vec{v}_{s} ^{\pi}$, surface wind speed for north pole	n sec ⁻¹	7570 COMP 3
WMAG1	$ \vec{V}_g ^\pi$, surface wind speed for south pole	m sec ⁻¹	7560 COMP 3
K1(J,I) K2(J,I)	temporary array in map routines	(various)	1760 HAPGEN
WIM	mn, area weighting factor magnitude	m ²	1370, 140 GMP
w	2mnπô, vertical velocity measure	m ² mb hr ⁻¹	11670 COMP 3
LABL(9)	input character identification		-
XLEV	level identification parameter (not used)		
XX1	$(T_1 + T_3)/(p_1^k + p_3^k)$, convective adjustment	deg mb - K	8250 COMP 3

FORTRAN Symbol	Meaning	Unite	Program Location
XXX	packed data location (= KKK)	L	11700 COMP 3
ZL3	avarage height of level 3 (= 2000)	n.	8920 COMP 3
ZM(J)	zonal mean at latitude φ	(various)	1360 GMP
ZMM	global mean	(various)	1420 GMP
MØNTH (3,12)	names of months		
ZZZ	φ _g /g, height of surface (level 4) (= 0 if ocean)	n	7900 COMP 3

REFERENCES

- Arakawa, A., "Numerical simulation of large-scale atmospheric motions," in Numerical Solution of Field Problems in Continuum Physics, Vol. 2, G. Birkhoff and S. Varga, Eds., American Math. Soc., Providence, R. I., pp. 24-40, 1970.
- Arakawa, A., A. Katayama, and Y. Mintz, "Numerical simulation of the general circulation of the atmosphere," in Proc. WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, Meteor. Soc. Japan, Tokyo, pp. IV.7-IV.8.12, 1969.
- Berkofsky, L., and E. A. Bertoni, "Mean topographic charts for the entire earth," Bull. Amer. Meteorol. Soc., 36: 350-354, 1955.
- Charney, J. G., et al., "The feasibility of a global observation and Analysis Experiment," Nat. Acad. Sci./Nat. Res. Council Publication 1290, Washington, D. C., 1966.
- Cressman, G. P., "Improved terrain effects in barotropic forecasts,"

 Monthly Weather Rev., 88: 327-342, 1960.
- Dietrich, G., General Oceanography, translated by F. Ostapoff, Interscience, New York, 1963.
- Jastrow, R., and M. Halem, "Simulation studies related to GARP," Bull. Amer. Meteorol. Soc., 51: 490-513, 1970.
- Joseph, J. H., "Calculation of radiative heating in numerical general circulation models," Tech. Rep. No. 1, Numerical Simulation of Weather and Climate, Department of Mecenrology, University of California at Los Angeles, 1966.
- Katayama, A., "Simplified schemes for calculation of the radiation," unpublished manuscript, 1969.
- Langlois, W. E., and H. C. W. Kwok, "Description of the Mintz-Arakawa numerical general circulation model," Tech. Rep. No. 3, Numerical Simulation of Weather and Climate, Department of Meteorology, University of California at Los Angeles, 1969.
- Langlois, W. E., and H. C. W. Kwok, Numerical Simulation of Weather and Climate. Part III. Hyperfine Grid with Improved Hydrological Cycle, Large-Scale Scientific Computation Department, IBM Research Laboratory, San Jose, Calif., 1970.
- Leovy, C., and Y. Mintz, "Numerical simulation of the atmospheric circulation and climate of Mars," J. Atmos. Sci., 26: 1167-1190, 1969.

- Manabe, S., and F. Möller, "On the radiative equilibrium and heat balance of the atmosphere," Monthly Weather Rev., 89: 503-532, 1961.
- Mintz, Y., "Very long-term global integration of the primitive equations of atmospheric motion," in WMO Tech. Note No. 66, pp. 141-167, 1965.
- Mintz, Y., "Very long-term global integration of the primitive equations of atmospheric motion: an experiment in climate simulation," in *Meteorological Monographs*, No. 30, pp. 20-36, 1968 [a revision of Mintz's WMO Tech. Note No. 66 article of 1965].
- Murgatroyd, R. J., "Some recent measurements by aircraft of humidity up to 50,000 feet in the tropics and their relationship to meridional circulation," Proceedings of Symposium on Atmospheric Osone, Oxford, IUGG Monograph No. 3, Paris, 1960.
- Posey, J. W., and P. F. Clapp, "Global distribution of normal surface albedo," Geofisica International, Mexico, pp. 33-48, 1964.
- Sverdrup, H. U., Oceanography for Meteorologists, Prentice-Hall, New York, 1943 [see Chart I].